Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Microsatellite and cpDNA variation in island and mainland populations of a regionally rare eucalypt, Eucalyptus perriniana (Myrtaceae)

Damien A. Rathbone A , Gay E. McKinnon A , Brad M. Potts A , Dorothy A. Steane A and René E. Vaillancourt A B
+ Author Affiliations
- Author Affiliations

A School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

B Corresponding author. Email: R.Vaillancourt@utas.edu.au

Australian Journal of Botany 55(5) 513-520 https://doi.org/10.1071/BT06203
Submitted: 10 October 2006  Accepted: 1 February 2007   Published: 17 August 2007

Abstract

Eucalyptus perriniana F.Muell. ex Rodway is distributed over a wide geographic range in south-eastern Australia as a series of small and isolated populations. In Tasmania, there are only three known populations that are separated by 511 km from the closest population on mainland Australia, which is one of the largest disjunctions observed for any eucalypt species. This project utilised eight nuclear microsatellites and one chloroplast DNA marker to study the genetic diversity in E. perriniana and determine the affinities between the populations. In all, 302 individuals in nine populations across the whole range of the species were sampled. The overall nuclear microsatellite diversity in E. perriniana (Ht = 0.85), as well as the diversity in each population (He = 0.73), was comparable to that found in widespread eucalypt species that have much larger population sizes. The microsatellites revealed that the isolated Tasmanian populations were significantly differentiated from mainland populations (FST between regions = 0.08), although the mainland Baw Baw population was the most differentiated. Most populations harboured different chloroplast DNA haplotypes, but in general, there were more mutational differences among haplotypes found in Tasmania than between Tasmanian and mainland populations. The Tasmanian populations often shared chloroplast DNA haplotypes with other eucalypts from south-eastern Tasmania. In conclusion, the populations of E. perriniana are genetically variable and significantly differentiated, with geographic separation being a poor predictor of the amount of genetic divergence. The most divergent populations are those in Tasmania and on Mt Baw Baw and their conservation is important to capture the genetic diversity in the species.


Acknowledgements

We thank Rebecca Jones, James Worth, Jules Freeman, Tim Jones and Adam Smolenski for their help. This research was supported by Discovery grants (DP0557260 and DP0664923) from the Australian Research Council.


References


Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341, 497–503.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterisation and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theoretical and Applied Genetics 97, 816–827.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brooker MIH (2000) A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brooker MIH , Kleinig DA (1999) ‘Field guide to eucalypts. Vol. 1. South-eastern Australia.’ 2nd edn. (Bloomings Books: Melbourne)

Butcher PA, Skinner AK, Gardiner CA (2005) Increased inbreeding and inter-species gene flow in remnant populations of the rare Eucalyptus benthamii. Conservation Genetics 6, 213–226.
Crossref | GoogleScholarGoogle Scholar | open url image1

Byrne M, Macdonald B (2000) Phylogeography and conservation of three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes. Australian Journal of Botany 48, 305–312.
Crossref | GoogleScholarGoogle Scholar | open url image1

Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Australian Journal of Botany 44, 331–341.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chippendale GM (1988) ‘Flora of Australia, Volume 19, Myrtaceae—Eucalyptus, Angophora.’ (Australian Government Publishing Service: Canberra)

Chippendale GM , Wolf L (1981) The natural distribution of Eucalyptus in Australia. Australian National Parks and Wildlife Service, Special Publication No. 6, Canberra.

Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Coates DJ, Sokolowski RE (1989) Geographic patterns of genetic diversity in Karri (Eucalyptus diversicolor F.Muell.). Australian Journal of Botany 37, 145–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15. open url image1

Dutech C, Maggia L, Joly HI (2000) Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Molecular Ecology 9, 1427–1432.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Foreman DB , Walsh NG (1993) ‘Flora of Victoria.’ (Inkata Press: Melbourne)

Frankel OH , Soulé ME (1981) ‘Conservation and evolution.’ (Cambridge University Press: Cambridge, UK)

Freeman J, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Australian Journal of Botany 49, 585–596.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hall N , Brooker MIH (1973). ‘Spinning Gum Eucalyptus perriniana F.Muell. ex Rodway. Forest Tree Series no. 67.’ (Australian Government Publishing Service: Canberra)

Harwood CE, Moran GF, Bell JC (1997) Genetic differentiation in natural populations of Grevillea robusta. Australian Journal of Botany 45, 669–678.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53, 313–318.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holman JE, Hughes JM, Fensham RJ (2003) A morphological cline in Eucalyptus: a genetic perspective. Molecular Ecology 12, 3013–3025.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jackson WD (1965) The vegetation. In ‘Atlas of Tasmania’. (Ed. JL Davies) pp. 30–55. (Tasmanian Government Printer: Hobart)

Jones RC, Steane DA, Potts BM, Vaillancourt RE (2002) Microsatellite and morphological analysis of Eucalyptus globulus populations. Canadian Journal of Forest Research 32, 59–66.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones RC, McKinnon GE, Potts BM, Vaillancourt RE (2005) Genetic diversity and mating system of an endangered tree Eucalyptus morrisbyi. Australian Journal of Botany 53, 367–377.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Molecular Ecology 16, 697–707.
Crossref | PubMed |
open url image1

Kennington WJ, James SH (1997) Contrasting patterns of clonality in two closely related mallee species from Western Australia, Eucalyptus argutifolia and E. obtusiflora (Myrtaceae). Australian Journal of Botany 45, 679–689.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kirkpatrick JB, Fowler M (1998) Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biological Conservation 85, 171–182.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lande R (1995) Mutation and conservation. Conservation Biology 9, 782–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lande R , Barrowcloug GF (1987) Effective population size, genetic variation, and their use in population management. In ‘Viable populations for conservation’. (Ed. ME Soulé) pp. 87–123. (Cambridge University Press: Cambridge, UK)

Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conservation Biology 10, 10–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lewis PO , Zaykin D (2001) ‘Genetic data analysis: computer program for the analysis of allelic data version 1.0 (d16c).’ Free program distributed by the authors.

McGowen MH, Wiltshire RJE, Potts BM, Vaillancourt RE (2001) The origin of Eucalyptus vernicosa, a unique shrub eucalypt. Biological Journal of the Linnean Society 74, 397–405.
Crossref |
open url image1

McKinnon GE, Vaillancourt RE, Jackson HD, Potts BM (2001) Chloroplast sharing in the Tasmanian eucalypts. Evolution 55, 703–711.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McKinnon GE, Jordan GJ, Vaillancourt RE, Steane DA, Potts BM (2004a) Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 275–284.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2004b) The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus. Molecular Ecology 13, 3751–3762.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moran GF , Hopper SD (1987) Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation. In ‘Nature conservation: the role of remnants of native vegetation’. (Eds DA Saunders, GW Arnold, AA Burbidge, AJM Hopkins) pp. 151–162. (Surrey Beatty: Sydney)

Nei M (1972) Genetic distance between populations. The American Naturalist 106, 283–292.
Crossref |
open url image1

Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA (1998) What molecules can tell us about populations; choosing and using a molecular marker. Ecology 79, 361–382.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peakall R , Smouse PE (2001) ‘GenAlEx V5: genetic analysis in Excel.’ Population genetic software for teaching and research. Australian National University, Canberra, Australia. Available from http://www.anu.edu.au/BoZo/GenAlEx/.

Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonisation by oaks. Proceedings of the National Academy of Sciences of the United States of America 94, 9996–10001.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Potts BM , Savva M (1988) Self-incompatibility in Eucalyptus. In ‘Pollination ‘88’. Melbourne. (Eds RB Knox, MB Sing, LF Troiani) pp. 165–170. (Plant Cell Biology Research Centre, University of Melbourne: Melbourne)

Potts BM , Wiltshire RJE (1997) Eucalypt genetics and genecology. In ‘Eucalypt ecology: individuals to ecosystems’. (Eds J Williams, J Woinarski) pp. 56–91. (Cambridge University Press: Cambridge, UK).

Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27, 83–109.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rodway L (1893) Description of Eucalyptus perriniana F.Muell. ex Rodway. Papers and Proceedings of the Royal Society of Tasmania 1893, 179–187. open url image1

Rossetto M, Jezierski G, Hopper SD, Dixon KW (1999) Conservation genetics and clonality in two critically endangered eucalypts from the highly endemic south-western Australian flora. Biological Conservation 88, 321–331.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sampson JF, Hopper SD, James SH (1988) Genetic diversity and the conservation of Eucalyptus crucis Maiden. Australian Journal of Botany 36, 447–460.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sampson JF, Hopper SD, James SH (1989) The mating system and population genetic structure in a bird-pollinated mallee, Eucalyptus rhodantha. Heredity 63, 383–393. open url image1

Sampson JF, Hopper SD, James SH (1995) The mating system and genetic diversity of the Australian arid zone mallee, Eucalyptus rameliana. Australian Journal of Botany 43, 461–474.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith S, Hughes J, Wardell-Johnson G (2003) High population differentiation and extensive clonality in a rare mallee eucalypt Eucalyptus curtisii—conservation genetics of a rare mallee eucalypt. Conservation Genetics 4, 289–300.
Crossref | GoogleScholarGoogle Scholar | open url image1

Steane DA, Vaillancourt RE, Russell J, Powell W, Marshall D, Potts BM (2001) Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae). Silvae Genetica 50, 89–91. open url image1

Swofford DL (1991) ‘PAUP: phylogenetic analysis using parsimony, version 3.1.1.’ (Illinois Natural History Survey: Champaign)

Tyson M, Vaillancourt RE, Reid JB (1998) Determination of clone size and age in a mallee eucalypt using RAPDs. Australian Journal of Botany 46, 161–172.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vaillancourt RE, Jackson HD (2000) A chloroplast DNA hypervariable region in eucalypts. Theoretical and Applied Genetics 101, 473–477.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams KJ, Potts BM (1996) The natural distribution of Eucalyptus species in Tasmania. Tasforests 8, 39–164. open url image1

Wiltshire RJE, Reid JB (1987) Genetic variation in the Spinning Gum, Eucalyptus perriniana F.Muell. ex Rodway. Australian Journal of Botany 35, 33–47.
Crossref | GoogleScholarGoogle Scholar | open url image1