Relict islands of the temperate rainforest tree Aextoxicon punctatum (Aextoxicaceae) in semi-arid Chile: genetic diversity and biogeographic history
Mariela C. Núñez-Ávila A B C D and Juan J. Armesto A CA CMEB, Laboratorio de Ecología Forestal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
B Present address: Instituto de Silvicultura, Universidad Austral de Chile, Valdivia, Chile.
C CASEB, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
D Corresponding author. Email: marielanunez@uach.cl
Australian Journal of Botany 54(8) 733-743 https://doi.org/10.1071/BT06022
Submitted: 8 February 2006 Accepted: 10 July 2006 Published: 29 November 2006
Abstract
Aextoxicon punctatum, the only representative of the family Aextoxicaceae, is a tree species endemic to temperate forests of western South America. This species exhibits a disjunct distribution pattern, with few isolated populations occurring on coastal hilltops of the Chilean semi-arid zone (SAZ), 30–32°S; small populations mixed with sclerophyllous forest in some gorges of the central Chilean Mediterranean coastal range (MCR), 32–39°S; more continuous forests extended along the southern temperate coastal range (TCR), 39–43°S; and fragmented populations eastward in the south temperate central depression and Andean foothills (TAF), 39–41°S. This geographic disjunction is the result of climatic and tectonic changes that took place in southern South America since the late Tertiary, leading to the isolation of forest fragments in the SAZ from the rest of the distribution. According to palynological evidence, populations of TCR and TAF originated from postglacial population expansions from refuges located on the coastal range, north of 40°S. We examined how the present genetic structure and diversity of Aextoxicon populations in Chile reflects this biogeographic history. Random amplified polymorphic DNA (RAPD) markers were used to characterise genetic differences within and among 16 populations of this species throughout its natural range. AMOVA and UPGMA analysis showed high genetic differentiation between the geographically closer SAZ and MCR populations, suggesting a long history of restricted genetic exchange between populations in these two zones. Estimates of Shannon’s genetic diversity and percentage polymorphism were relatively low compared with other southern temperate forest trees (mainly conifers) that were less affected by the glaciations. Positive correlations between genetic and geographic distances were found for TCR but not for TAF populations, suggesting earlier postglacial population expansion southwards along the TCR and more recent eastward migration from coastal locations to TAF during the Holocene.
Acknowledgments
We dedicate this paper to our colleague Carolina Villagrán, who introduced us to the enigmatic history of Olivillo forests and stimulated us to pursue this study. We thank many friends and colleagues for helping with field sampling. Pete Hollingsworth, Adrian Newton, Richard Ennos, Sylvain Fulgeiron, Mark Hershkovitz and Elie Poulin offered technical advice and comments on earlier versions of this manuscript. CONAF and landowners are thanked for allowing access to research sites. This work was supported by graduate fellowships from CMEB (P99-103F-ICM) and from Universidad de Chile (PG/28/02), and by grants from FONDAP-FONDECYT 1501-0001 (CASEB, Pontificia Universidad Católica de Chile) and BIOCORES Project funded by EC under INCO IV program (contract ICA 4-CT-2001-10095). This is a contribution to the research program of Senda Darwin Biological Station, Chile.
Allnutt TR,
Newton AC,
Lara A,
Premoli A,
Armesto JJ,
Vergara R, Gardner M
(1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology 8, 975–987.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Allnutt TR,
Courtis JR,
Gardner M, Newton AC
(2001) Genetic variation and wild Chilean and cultivated British populations of Podocarpus salignus D.Don (Podocarpaceae). Edinburgh Journal of Botany 58, 459–473.
Allnutt TR,
Newton AC,
Premoli AC, Lara A
(2003) Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biological Conservation 114, 245–253.
| Crossref | GoogleScholarGoogle Scholar |
Antonovics J
(1968) Evolution in closely adjacent populations. VI. Manifold effects of gene flow. Heredity 23, 507–524.
Armesto JJ,
Rozzi R,
Smith-Ramirez C, Arroyo MTK
(1998) Conservation targets in South American temperate forests. Science 282, 1271–1272.
| Crossref | GoogleScholarGoogle Scholar |
Bekessy SA,
Allnutt TR,
Premoli AC,
Lara A,
Ennos RA,
Burgman MA,
Cortes M, Newton AC
(2002) Genetic variation in the vulnerable and endemic monkey puzzle tree, detected using RAPDs. Heredity 88, 243–249.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bossart JL, Prowell DP
(1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends in Ecology and Evolution 13, 202–205.
| Crossref | GoogleScholarGoogle Scholar |
Bull-Hereñu K,
Martínez EA, Squeo FA
(2005) Structure and genetic diversity in Colliguaja odorífera Mol. (Euphorbiaceae), a shrub subjected to Pleisto-Holocenic natural perturbations in a Mediterranean South American region. Journal of Biogeography 32, 1129–1138.
| Crossref | GoogleScholarGoogle Scholar |
Chase HW, Hills HH
(1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40, 215–220.
| Crossref | GoogleScholarGoogle Scholar |
Dawson IK,
Simons AJ,
Waugh R, Powell W
(1995) Diversity and genetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays. Heredity 74, 10–18.
| PubMed |
Etisham-Ul-Haq M,
Allnutt TR,
Smith-Ramírez C,
Gardner MF,
Armesto JJ, Newton AC
(2001) Patterns of genetic variation in and ex situ populations of the threatened Chilean vine Berberidopsis corallina, detected using RAPD markers. Annals of Botany 87, 813–821.
| Crossref | GoogleScholarGoogle Scholar |
Excoffier L,
Smouse PE, Quattro JM
(1992) Analysis of molecular variance inferred from metric distances among DNA haplogroups: applications to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| PubMed |
Heusser CJ,
Heusser LE, Lowell TV
(1999) Paleoecology of the southern Chilean Lake District Isla Grande de Chiloé during middle–late Llanquihue glaciation and deglaciation. Geografiska Annaler 81, 231–284.
| Crossref | GoogleScholarGoogle Scholar |
Hinojosa LF, Villagrán C
(1997) Historia de los bosques del sur de Sudamerica I: Antecedentes paleobotánicos, geológicos y climáticos del terciario del cono sur de América. Revista Chilena de Historia Natural 70, 225–239.
Jara P,
Squeo FA, Hershkovitz M
(2002) Divergencia genética en Drimys (canelo) en Chile, mediante análisis con RAPD. Biological Research 35, R-54.
Jenny B,
Valero-Garcés BL,
Villa-Martínez R,
Urrutia R,
Geyh M, Veit H
(2002) Early to Mid-Holecene aridity in central Chile and the southern westerlies: The Laguna Aculeo record (34°S). Quaternary Research 58, 160–170.
| Crossref | GoogleScholarGoogle Scholar |
Kummerow J
(1966) Aporte al conocimiento de las condiciones climáticas del bosque de Fray Jorge. Boletín Técnico de la Facultad de Agronomía, Universidad de Chile 24, 21–28.
Lewontin RC
(1972) The apportionment of human diversity. Evolutionary Biology 6, 381–398.
Looser G
(1935) Argumentos botánicos a favor de un cambio de clima en Chile central en tiempos geológicos recientes. Revista Universitaria 20, 843–857.
Loveless MD, Hamrick JL
(1984) Ecological determinants of genetic structure in plants populations. Annual Review of Ecology and Systematics 15, 65–95.
| Crossref | GoogleScholarGoogle Scholar |
Lynch M, Milligan BG
(1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 91–99.
| PubMed |
Maldonado A, Villagrán C
(2002) Paleoenvironmental changes in the semi-arid coast of Chile (32°S) during the last 6200 cal years inferred from a swamp forest pollen records. Quaternary Research 58, 130–138.
| Crossref | GoogleScholarGoogle Scholar |
Mantel N
(1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
| PubMed |
Martínez EA, Núñez-Ávila M
(2001) Uso de marcadores moleculares para evaluar el estado híbrido de Colliguaja salicifolia. Biological Research 34, R36.
Muñoz C, Pisano E
(1947) Estudio de la vegetación y flora de los parques nacionales de Fray Jorge y Talinay. Agricultura Técnica 7, 71–190.
Nei M
(1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.
Newton AC,
Allnut T,
Gillies AC,
Lowe A, Ennos RA
(1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends in Ecology and Evolution 14, 140–145.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nybom H, Bartish VI
(2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3, 93–114.
| Crossref | GoogleScholarGoogle Scholar |
Pérez C, Villagrán C
(1994) Influencias del clima en el cambio florístico, vegetacional y edáfico de lo bosques de ’olivillo‘ (Aextoxicon punctatum R. et Pav.) de la Cordillera de Costa de Chile: implicancias biogeográficas. Revista Chilena de Historia Natural 67, 77–90.
Philippi F
(1884) A visit to the northernmost forest of Chile. Journal of Botany 22, 202–211.
Savolainen V,
Chase MW,
Hoot SB,
Morton CM,
Soltis DE,
Bayer C,
Fay MF,
De Bruijn AY,
Sullivan S, Qiu YL
(2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49, 306–362.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schaal BA,
Hayworth DA,
Olsen KM,
Rauscher JT, Smith WA
(1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7, 465–474.
| Crossref | GoogleScholarGoogle Scholar |
Schmithüsen J
(1956) Die räumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen 17, 1–86.
Skottsberg C
(1984) Apuntes sobre la historia y vegetación de Fray Jorge (Coquimbo, Chile). Acta Horti Gotoburgensis 18, 91–184.
Smith-Ramírez C
(2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate forests. Biodiversity and Conservation 13, 373–393.
| Crossref | GoogleScholarGoogle Scholar |
Szmidt AE,
Wang XR, Lu MZ
(1996) Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 76, 412–420.
Troncoso AC,
Villagrán C, Muñoz M
(1980) Una nueva hipótesis acerca del origen y edad del bosque de Fray Jorge (Coquimbo, Chile). Boletín del Museo Nacional de Historia Natural de Chile 37, 117–152.
del-Val E,
Armesto JJ,
Barbosa O,
Christie DA,
Gutiérrez AG,
Jones CG,
Marquet PA, Weathers KC
(2006) Rain forest islands in the Chilean semi-arid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems 9, 598–608.
| Crossref | GoogleScholarGoogle Scholar |
Villa-Martínez R, Villagrán C
(1997) Historia de la vegetación de los bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Revista Chilena de Historia Natural 7, 391–401.
Villagrán C
(1991) Historia de los bosques templados del sur de Chile durante el tardiglacial y postglacial. Revista Chilena de Historia Natural 64, 447–460.
Villagrán C
(2001) Un modelo de la historia de la vegetación de la Cordillera de la costa de Chile central-sur: la hipótesis glacial de Darwin. Revista Chilena de Historia Natural 74, 793–803.
Villagrán C, Varela J
(1990) Palynological evidence for increased aridity on the central Chilean coast during the Holocene. Quaternary Research 34, 198–207.
| Crossref | GoogleScholarGoogle Scholar |
Williams JGK,
Kubelik AR,
Livak KJ,
Rafalski JA, Tingey SV
(1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6536.
| PubMed |
Wolffhügel K
(1949) Rätsel der Notohylaea. Revista Sudamericana de Botánica 8, 45–58.