Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Bark anatomy of three indigenous conifers from southern South America

M. A. Castro A C , N. M. Apóstolo B and L. E. Navarro A
+ Author Affiliations
- Author Affiliations

A Laboratorio de Anatomía Vegetal, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4, Laboratorio 17, Ciudad Universitaria, Núñez (1428), Buenos Aires, Argentina.

B Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, Argentina.

C Corresponding author. Email: mac@bg.fcen.uba.ar

Australian Journal of Botany 54(1) 73-82 https://doi.org/10.1071/BT04065
Submitted: 24 May 2004  Accepted: 8 August 2005   Published: 22 February 2006

Abstract

This paper describes the bark anatomy of three native conifers from southern South America, Podocarpus nubigena Lindl., Saxegothaea conspicua Lindl. (Podocarpaceae) and Araucaria araucana (Mol.) K.Koch. (Araucariaceae). The bark colours of these three conifers are greyish-brown, reddish-brown and true brown, respectively. Morphologically, the bark of S. conspicua is scaly whereas it is fissured in A. araucana and P. nubigena. Fissures are relatively shallow in P. nubigena and relatively deep in A. araucana. The latter two species have elongated stripes and polygonal to irregular plates, respectively. Anatomically, P. nubigena shows a gradual transition between non-collapsed and collapsed phloem. This species shows secondary phloem cells regularly arranged in continuous tangential bands composed of alternating sieve cells, axial parenchyma and fibres. In A. araucana the ordered pattern observed in the non-collapsed secondary phloem is lost in the collapsed phloem. All three species show homocellular and uniseriate rays exhibiting a sinuous trajectory in the collapsed phloem and into the rhytidome. Fibres in P. nubigena are arranged in narrow, tangentially uniseriate lines. Sclereids are observed in S. conspicua whereas ramified sclereids and fibres are present in A. araucana. Minute cell-wall crystals in the fibres are exhibited in all species. The persistent rhytidome occupies a variable proportion of the bark. A. araucana shows thick periderms and rhytidome, with indistinct rays in dead phloem. Starch, tannins and resins are frequent in parenchyma. Secretory canals are present only in A. araucana. In summary, the external morphology, arrangement of axial parenchyma, type of the sclerenchymatous tissue, presence of secretory canals and cell-wall crystals are the most important features that can be used for identification when other diagnostic plant parts are missing.


Acknowledgments

We are indebted to the Argentine National Parks Administration for allowing us to collect bark material and to Dr Fidel Roig for his comments and critical readings of the manuscript. This research was supported by the Science and Technology Department of Buenos Aires University (Ubacyt X-670).


References


Bamber RK (1959) Anatomy of the barks of five species of Callitris Vent. Linnean Society of New South Wales 84, 375–381. open url image1

Boodle LA (1916) A method of macerating fibres. Bulletin Miscellany Information Kew 4, 108–110. open url image1

Butterfield, BG ,  and  Meylan, BA (1980). ‘Three-dimensional structure of wood.’ (Chapman and Hall: London)

Castro MA, Apóstolo NM, De Magistris AA (2005) Bark anatomy of Nothofagus species (Nothofagaceae) indigenous to the Andean–Patagonian forest, Argentina. Australian Journal of Botany 53, 69–79.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chan LL (1985) The anatomy of the bark of Libocedrus in New Zealand. IAWA Bulletin. New Series 6, 23–34. open url image1

Chan LL (1986) The anatomy of the bark of Agathis in New Zealand. IAWA Bulletin. New Series 7, 229–241. open url image1

Chang YP (1954a) Bark structure of North American conifers. USDA Technology Bulletin 1095, 1–86. open url image1

Chang YP (1954b) Anatomy of common North American pulpwood barks. TAPPI Monographs Series No. 14, USA.  , open url image1

Cheadle VJ, Gifford EM, Esau K (1953) A staining combination for phloem and contiguous tissues. Stain Technology 28, 49–53.
PubMed |
open url image1

Craddock O (1932) The rind of Podocarpus with special reference to the bark. Journal of New Zealand School Forestry 3, 61–65. open url image1

De Magistris AA, Castro MA (2001) Bark anatomy of southern South American Cupressaceae. IAWA Journal 22, 367–383. open url image1

Esau K (1969) The phloem. Handbuch der Pflanzenanatomie 5, 2. open url image1

Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Botanical Review 46, 361–427. open url image1

Fink S (1991) Comparative microscopical studies on the patterns of calcium oxalate distribution in the needles of various conifer species. Botanica Acta 104, 306–315. open url image1

Holdheide, W (1951). Anatomie mitteleuropäischer Gehölzrinden. In ‘Handbuch der Mikroskopie in der Technik’. Vol. 5/1. pp. 193–367. (Umschau-Verlag: Frankfurt)

Howard ET (1971) Bark structure of the southern pines. Wood Science 3, 134–148. open url image1

Junikka L (1994) Survey of English macroscopic bark terminology. IAWA Journal 15, 3–45. open url image1

Kučera LJ, Butterfield BG (1977) Resin canals in the bark of Phyllocladus species indigenous to New Zealand. New Zealand Journal of Botany 15, 657–663. open url image1

Lev-Yadun S, Liphschitz N (1989) Sites of first phellogen initiation in conifers. IAWA Bulletin 10, 43–52. open url image1

Liphschitz N, Lev-Yadun S, Waisel Y (1981) The annual rhythm of activity of the lateral meristems (cambium and phellogen) in Cupressus sempervirens L. Annals of Botany 47, 485–496. open url image1

Lotova, LI (1987). ‘Bark anatomy of conifers.’ (Academic Science: Moscow)

Möeller, J (1882). ‘Anatomie der Baumrinden.’ (Springer: Berlin)

Parameswaran N, Liese W (1979) Crystal-containing walls of spicular cells in Welwitschia. IAWA Bulletin 4, 87–89. open url image1

Richter, HG (1981). ‘Die Anatomie des sekundären Xylems in der Rinde der Lauraceae. Sonderbánde Naturwiss, Vereins Hamburg 5.’ (Paul Parey Verlag: Hamburg)

Robinson DE, Grigor JK (1963) The origin of periderm in some New Zealand plants. Transactions of the Royal of Society New Zealand (Botany) 2, 121–124. open url image1

Rupp P (1964) Polyglycol als Einsbettungmedium zum Schneiden botanischer Präparate. Mikrokosmos 53, 123–128. open url image1

Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 31–43.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Strasburger, E (1891). ‘Ueber den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen, Histologische Beiträge Heft III.’ (Gustav Fischer: Jena, Germany)

Tortorelli, LA (1956). ‘Maderas y bosques argentinos.’ (ACME: Buenos Aires)

Trockenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bulletin 11, 141–166. open url image1

Wattendorf J (1969) Feinbau und Entwicklung der verkorkten Calciumoxalat–Kristallzellen in der Rinde von Larix decidua Mill.Z. Pflanzenphysiologie 60, 307–347. open url image1

Wattendorf J, Schmid H (1973) Prüfung auf perjodatreaktive Feinstrukturen in den suberinisierten Kristallzell-Wänden von Larix und Picea. Z. Pflanzenphysiologie 68, 422–431. open url image1

Yamanaka K (1989) Formation of traumatic phloem resin canals in Chamaecyparis obtusa. IAWA Bulletin 10, 384–394. open url image1