Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Sunflower meal and spring pea ruminal degradation protection using malic acid or orthophosphoric acid-heat treatments

F. Díaz-Royón A , J. M. Arroyo A , M. D. Sánchez-Yélamo B and J. González A C
+ Author Affiliations
- Author Affiliations

A Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.

B Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.

C Corresponding author. Email: javier.gonzalez@upm.es

Animal Production Science 56(12) 2029-2038 https://doi.org/10.1071/AN14669
Submitted: 2 July 2014  Accepted: 8 June 2015   Published: 27 July 2015

Abstract

The effects of solutions of malic or orthophosphoric acids (0.752 Eqg/kg of feed) and heat to protect proteins of sunflower meal (SFM) and spring pea (SP) against ruminal degradation were studied using particle transit, 15N infusion, in situ and electrophoretic techniques. Three wethers fitted with rumen and duodenum cannulae were successively fed three isoproteic diets including SFM and SP, untreated or treated with malic or orthophosphoric acids. Incubations of tested meals were only performed while feeding the respective diet. Estimates of the ruminally undegraded fraction (RU) and its intestinal digestibility of dry matter, organic matter (only for RU), crude protein and starch (only in SP) were obtained considering ruminal microbial contamination and particle comminution and outflow rates. When corrected for microbial contamination, estimates of RU and intestinal digestibility decreased in all tested fractions for both feeds. All RU estimates increased with the protective treatments, whereas intestinal digestibility-dry matter also increased in SFM. Low intestinal digestibility-crude protein values suggested the presence of antitrypsin factors in SP. Protective treatments of both feeds led to consistent increases in the intestinal digested fraction of dry matter and crude protein, being only numerically different for SP-starch (60.5% as average). However, treatments also reduced the organic matter fermentation, which may decrease ruminal microbial protein synthesis. Electrophoretic studies showed albumin disappearance in both SFM and SP, whereas changes in other RU proteins were more pronounced in SP than SFM.

Additional keywords: heat, malic and orthophosphoric acids, protein protection.


References

Allen RD, Nessler CL, Thomas TL (1985) Developmental expression of sunflower 11S protein genes. Plant Molecular Biology 5, 165–173.
Developmental expression of sunflower 11S protein genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1Sq&md5=5a0258b35f8cda14c07f698281c55a3cCAS | 24306652PubMed |

AOAC (2000) ‘Official methods of analysis.’ 17th edn. (Association of Official Analytical Chemists: Gaithersburg, MD)

ARC (1984) ‘The nutrient requirement of ruminant livestock (Supplement no. 1).’ (CAB International: Wallingford, UK)

Arroyo JM, González J (2013) Effects of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs. Journal of Animal Physiology and Animal Nutrition 97, 109–118.
Effects of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVegtro%3D&md5=d318b087f990e5bc57deeb731aa78adbCAS | 22050125PubMed |

Arroyo JM, González J, Muñoz J, Alvir MR, Rodríguez CA, Ibáñez MA, del Castillo MD (2011) In vitro efficiency of combined acid-heat treatments for protecting sunflower meal proteins against ruminal degradation. Animal 5, 1188–1194.
In vitro efficiency of combined acid-heat treatments for protecting sunflower meal proteins against ruminal degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1eiu7k%3D&md5=b9bd312749d57fb5f18aefc8dd4fa025CAS | 22440171PubMed |

Arroyo JM, González J, Ouarti M, Silván JM, Ruiz del Castillo ML, de la Peña Moreno F (2013) Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply. Animal 7, 223–231.
Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlWgug%3D%3D&md5=7ceb3727e97bc104ad7eebf5039cd9a5CAS | 23032153PubMed |

Aufrère J, Graviou D, Michalet-Doreau B (1994) Degradation in the rumen of proteins of two legumes: soybean meal and field pea. Reproduction, Nutrition, Development 34, 483–490.
Degradation in the rumen of proteins of two legumes: soybean meal and field pea.Crossref | GoogleScholarGoogle Scholar | 7802940PubMed |

Aufrère J, Graviou D, Melcion JP, Demarquilly C (2001) Degradation in the rumen of lupin (Lupinus albus L.) and pea (Pisum sativum L.) seed proteins: effect of heat treatment. Animal Feed Science and Technology 92, 215–236.
Degradation in the rumen of lupin (Lupinus albus L.) and pea (Pisum sativum L.) seed proteins: effect of heat treatment.Crossref | GoogleScholarGoogle Scholar |

BOE (2005) Real Decreto 1201/2005 ‘About protection of animals used for experimental and other scientific purposes’. Boletín Oficial del Estado 252, 34367–34391. [In Spanish]

Callaway TR, Martin SA (1996) Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. Journal of Animal Science 74, 1982–1989.

Carro MD, López S, Valdés C, Ovejero FJ (1999) Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Animal Feed Science and Technology 79, 279–288.
Effect of DL-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFagu7k%3D&md5=9f2a3937c6ea1825e526965490230154CAS |

Casey R (1999) Distribution and some properties of seed globulins. In ‘Seeds proteins’. (Eds PR Shewry, R Casey) pp. 159–169. (Kluwer Academic Publishers: Dordrecht)

Casey R, Domoney C (1999) Pea globulins. In ‘Seeds proteins’. (Eds PR Shewry, R Casey) pp. 171–204. (Kluwer Academic Publishers: Dordrecht)

Croy RRD, Gatehouse MT, Boulter D (1980) The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.). The Biochemical Journal 191, 509–516.

Derbyshire E, Wright DJ, Boulter D (1976) Legumin and vicilin, storage proteins of legume seeds. Phytochemistry 15, 3–24.
Legumin and vicilin, storage proteins of legume seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhsVOmurs%3D&md5=6896c45da3c9a8e10264c57fd4a716a7CAS |

Dhanoa MS, Siddons RC, France J, Gale DL (1985) A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53, 663–671.
A multicompartmental model to describe marker excretion patterns in ruminant faeces.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FltFCiug%3D%3D&md5=4f64ce25316e334f29a1360b6858930dCAS | 4063294PubMed |

Ellis W, Wylie MJ, Matis JH (1979) Quantitating ruminal turnover. Federation Proceedings 38, 2702–2706.

González J, Rodríguez CA, Andrés SG, Alvir MR (1998) Rumen degradability and microbial contamination of fish meal and meat meal measured by the in situ technique. Animal Feed Science and Technology 73, 71–84.
Rumen degradability and microbial contamination of fish meal and meat meal measured by the in situ technique.Crossref | GoogleScholarGoogle Scholar |

González J, Ouarti M, Rodríguez CA, Alvir MR (2006) Effects of considering the rate of comminution of particles and microbial contamination on the accuracy of in situ studies of feed protein degradability in ruminants. Animal Feed Science and Technology 125, 89–98.
Effects of considering the rate of comminution of particles and microbial contamination on the accuracy of in situ studies of feed protein degradability in ruminants.Crossref | GoogleScholarGoogle Scholar |

INRA (2007) ‘Alimentation des Bovins, Ovins et Caprins. Besoins des Animaux – Valeurs des Aliments, Tables INRA 2007.’ (Quae Editions: Versailles, France)

Kortt AA, Cadwell JB (1990) Low molecular weight albumins from sunflower seed: identification of a methionine-rich albumin. Phytochemistry 29, 2805–2810.
Low molecular weight albumins from sunflower seed: identification of a methionine-rich albumin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVynsrg%3D&md5=a681d208e3d464f6d990f1cd1f644fd4CAS |

Kortt AA, Cadwell JB, Lilley GG, Higgins TJV (1991) Aminoacid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). European Journal of Biochemistry 195, 329–334.
Aminoacid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Kqt7o%3D&md5=28b80f49a5bf4218309552e2146418ddCAS | 1997318PubMed |

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=8476ddd32a2f6c2589a42ac0d5d1196eCAS | 5432063PubMed |

Martin SA, Streeter MN (1995) Effect of malate on in vitro mixed ruminal microorganism fermentation. Journal of Animal Science 73, 2141–2145.

NRC (2001) ‘Nutrient requirements of dairy cattle.’ 7th revised edn. (National Academy Press: Washington, DC)

O’Kane FE, Happe RP, Vereijken JM, Gruppen H, van Boekel MAJS (2004) Characterization of Pea Vicilin. 1. Denoting Convicilin as the α-Subunit of the Pisum Vicilin Family. Journal of Agricultural and Food Chemistry 52, 3141–3148.
Characterization of Pea Vicilin. 1. Denoting Convicilin as the α-Subunit of the Pisum Vicilin Family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSgtb0%3D&md5=f6381f611a35a43c56828c3e3e27f8a8CAS | 15137866PubMed |

Ørskov ER, McDonald I (1979) The estimation of protein degradability in the rumen from incubation measurements weighted according to rates of passage. The Journal of Agricultural Science 92, 499–503.
The estimation of protein degradability in the rumen from incubation measurements weighted according to rates of passage.Crossref | GoogleScholarGoogle Scholar |

Robertson JB, Van Soest PJ (1981) The detergent system of analysis and its application to human foods. In ‘The analysis of dietary fiber in food’. (Eds WPT James, O Theander) pp. 123–142. (Marcel Dekker Inc.: New York)

Rodríguez CA, González J (2006) In situ study of the relevance of bacterial adherence to feed particles on the contamination and accuracy of rumen degradability estimates of feeds of vegetable origin. British Journal of Nutrition 96, 316–325.
In situ study of the relevance of bacterial adherence to feed particles on the contamination and accuracy of rumen degradability estimates of feeds of vegetable origin.Crossref | GoogleScholarGoogle Scholar | 16923226PubMed |

Rodríguez CA, González J, Alvir MR, Repetto JL, Centeno C, Lamrani F (2000) Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal of Nutrition 84, 369–376.

SAS (1999) ‘SAS/STAT user’s guide. Version 8.’ (SAS Institute: Cary, NC)

Shewry PR, Pandya MJ (1999) The 2S Albumin Storage Proteins. In ‘Seeds proteins’. (Eds PR Shewry, R Casey) pp. 563–586. (Kluwer Academic Publishers: Dordrecht)

Spencer D, Higgins TJV, Freer M, Dove H, Coombe JB (1988) Monitoring the fate of dietary proteins in rumen fluid using gel electrophoresis. British Journal of Nutrition 60, 241–247.
Monitoring the fate of dietary proteins in rumen fluid using gel electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVygt78%3D&md5=2198f5222f17998cd5a3ba7f428dca94CAS | 3196671PubMed |

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnvVCltA%3D%3D&md5=e5c1ebe000070887297cc2a8c330cfc1CAS | 1660498PubMed |

Vázquez JF, Sánchez-Yélamo MD, Carrillo JM (2000) Marcadores morfológicos y bioquímicos. In ‘Los marcadores genéticos en la mejora vegetal’. (Eds F Nuez, JM Carrillo) pp. 23–90. (UPV: Valencia)