Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Variation at CPE but not CEBPA appears to be associated with intramuscular fat deposition in the longissimus muscle of cattle

William Barendse A B , Rowan J. Bunch A and Blair E. Harrison A
+ Author Affiliations
- Author Affiliations

A Cooperative Research Centre for Beef Genetic Technologies, CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia.

B Corresponding author. Email: bill.barendse@csiro.au

Animal Production Science 49(7) 558-562 https://doi.org/10.1071/EA08307
Submitted: 19 December 2008  Accepted: 10 March 2009   Published: 11 June 2009

Abstract

An important step in the localisation of quantitative trait loci is the confirmation of trait-marker associations in independent studies. In this report, we test three single nucleotide polymorphisms (SNP) of two genes for associations to intramuscular fat (IMF) measurements in cattle. We genotyped SNP of carboxypeptidase E (CPE) and ccaat/enhancer binding protein, α (CEBPA) in a sample of a total of 813 cattle of taurine, composite and indicine breeds. All three polymorphisms showed significant differences between breeds, with the widest range found in CEBPA:g.271A > C where the A allele frequency ranged from P = 0.07 in Brahman to 0.88 in Shorthorn. The taurine breeds showed high linkage disequilibrium between the pair of CPE SNP, with all four breeds showing r2 = 1.0. The Brahman and Santa Gertrudis showed r2 ≤ 0.17. Both CPE:g.445C > T and CPE:g.601C > T SNP showed significant allele substitution effects to IMF in animals of taurine ancestry, with an allele substitution effect of α = 0.22, P = 0.020 for CPE:g.445C > T, explaining 0.4% of the phenotypic variance.


Acknowledgements

Peter Allingham and John Henshall and two anonymous referees commented on a draft of the manuscript. We thank Meat and Livestock Australia and the Beef CRC for financial support (WB).


References


Barendse W (2005) The transition from quantitative trait loci to diagnostic test in cattle and other livestock. Australian Journal of Experimental Agriculture 45, 831–836.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N (2004) The TG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Australian Journal of Experimental Agriculture 44, 669–674.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barendse W, Bunch RJ, Kijas JW, Thomas MB (2007) The effect of genetic variation of the retinoic acid receptor-related orphan receptor C gene on fatness in cattle. Genetics 175, 843–853.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Barendse W, Harrison BE, Bunch RJ, Thomas MB (2008) Variation at the calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC Genetics 9, 41.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buchanan FC, Fitzsimmons CJ, van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM (2002) Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics, Selection, Evolution. 34, 105–116.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, , et al . (2007) Replicating genotype–phenotype associations. Nature 447, 655–660.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cheong HS, Yoon D, Kim LH, Park BL, Lee HW, , et al . (2007) Titin-cap (TCAP) polymorphisms associated with marbling score of beef. Meat Science 77, 257–263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheong HS, Yoon DH, Park BL, Kim LH, Bae JS, , et al . (2008) A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genetics 9, 33.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chikuni K , Mitsuhashi T (2002) Method of evaluating useful cattle: Patent WO02077279 CA 2441938, Canada.

Gilmour AR , Gogel BJ , Cullis BR , Welham SJ , Thompson R (2002) ‘ASReml user guide. Release 1.0.’ (VSN International: Hemel Hempstead, UK)

Hale CS, Herring WO, Shibuya H, Lucy MC, Lubahn DB, Keisler DH, Johnson GS (2000) Decreased growth in Angus steers with a short TG-microsatellite allele in the P1 promoter of the growth hormone receptor gene. Journal of Animal Science 78, 2099–2104.
PubMed |
open url image1

Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38, 226–231.
Crossref | GoogleScholarGoogle Scholar | open url image1

Johnston DJ, Reverter A, Ferguson DM, Thompson JM, Burrow HM (2003) Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 3. Meat quality traits. Australian Journal of Agricultural Research 54, 135–147.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics 33, 177–182.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Michal JJ, Zhang ZW, Gaskins CT, Jiang Z (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu × Limousin F2 crosses. Animal Genetics 37, 400–402.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morsci NS, Schnabel RD, Taylor JF (2006) Association analysis of adiponectin and somatostatin polymorphisms on BTA1 with growth and carcass traits in Angus cattle. Animal Genetics 37, 554–562.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF, Carroll RJ, Paigen BJ, Leiter EH (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genetics 10, 135–142.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Perry D, Shorthose WR, Ferguson DM, Thompson JM (2001) Methods used in the CRC program for the determination of carcass yield and beef quality. Australian Journal of Experimental Agriculture 41, 953–957.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pethick DW, Harper GS, Oddy VH (2004) Growth, development and nutritional manipulation of marbling in cattle: a review. Australian Journal of Experimental Agriculture 44, 705–715.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reverter A, Johnston DJ, Ferguson DM, Perry D, Goddard ME, Burrow HM, Oddy VH, Thompson JM, Bindon BM (2003a) Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 4. Correlations among animal, carcass, and meat quality traits. Australian Journal of Agricultural Research 54, 149–158.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reverter A, Johnston DJ, Perry D, Goddard ME, Burrow HM (2003b) Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 2. Abattoir carcass traits. Australian Journal of Agricultural Research 54, 119–134.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shin SC, Chung ER (2007) SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian-Australasian Journal of Animal Sciences 20, 328–333. open url image1

Shin SC, Kang MJ, Chung ER (2007) Identification of a novel SNP associated with meat quality in C/EBP alpha gene of Korean cattle. Asian-Australasian Journal of Animal Sciences 20, 466–470. open url image1

Snedecor GW , Cochran WG (1967) ‘Statistical methods.’ (The Iowa State University Press: Ames, IA, USA)

Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S (2004) Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 15, 142–148.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, Zuhlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Animal Genetics 34, 354–357.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thompson J (2002) Managing meat tenderness. Meat Science 62, 295–308.
Crossref | GoogleScholarGoogle Scholar | open url image1

Upton W, Burrow HM, Dundon A, Robinson DL, Farrell EB (2001) CRC breeding program design, measurements and database: methods that underpin CRC research results. Australian Journal of Experimental Agriculture 41, 943–952.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang N-d, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ (1995) Impaired energy homeostasis in C/EBPα knockout mice. Science 269, 1108–1112.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, , et al . (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genetics 40, 575–583.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weir BS (1996) ‘Genetic data analysis II.’ (Sinauer Associates: Sunderland, MA)

Wheeler TL, Cundiff LV, Shackelford SD, Koohmaraie M (2001) Characterization of biological types of cattle (Cycle V): carcass traits and longissimus palatability. Journal of Animal Science 79, 1209–1222.
PubMed |
open url image1