Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

New candidate markers of phosphorus status in beef breeder cows

S. T. Anderson A G , L. J. Kidd B , M. A. Benvenutti C F , M. T. Fletcher D and R. M. Dixon E
+ Author Affiliations
- Author Affiliations

A Laboratory for Animal Endocrinology, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Qld 4072, Australia.

B School of Veterinary Science, The University of Queensland, Gatton, Qld 4343, Australia.

C Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, The University of Queensland, PO Box 6014, Gayndah, Qld 4625, Australia.

D Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, The University of Queensland, PO Box 156, Archerfield BC, Qld 4108, Australia.

E Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, The University of Queensland, PO Box 6014, Rockhampton, Qld 4702, Australia.

F Present address: Department of Agriculture and Fisheries, Gatton, Qld 4343, Australia.

G Corresponding author. Email: stephen.anderson@uq.edu.au

Animal Production Science 57(11) 2291-2303 https://doi.org/10.1071/AN17363
Submitted: 31 May 2017  Accepted: 7 August 2017   Published: 19 September 2017

Abstract

Determining the phosphorus (P) status of cattle grazing P-deficient rangelands in northern Australia is important for improving animal production in these areas. Plasma inorganic P concentration is currently the best diagnostic marker of dietary P deficiency in growing cattle but is not suitable for assessing the P status of breeder cows, which often mobilise substantial bone and soft tissue reserves in late pregnancy and lactation. Markers of bone turnover offer potential as markers of P status in cattle, as they reflect bone mobilisation or bone formation. Recent experiments investigating the physiology of beef breeder cows during diet P deficiency have indicated that the ratio of plasma total calcium concentration to plasma inorganic P concentration might be suitable as a simple index of P deficiency. However, a more specific measure of increased bone mobilisation in P-deficient breeders is plasma concentration of C-terminal telopeptide of Type 1 collagen. Also, plasma concentration of bone alkaline phosphatase is a marker of defective bone mineralisation in dietary P deficiency. These candidate markers warrant further investigation to determine their predictive value for P deficiency in cattle.

Additional keywords: bone alkaline phosphatase, bone mobilisation, CTX-1, lactation.


References

Albright F, Bauer W, Cockrill JR, Ellsworth R (1931) Studies in parathyroid physiology II. The relation of the serum calcium to the serum phosphorus at different levels of parathyroid activity. The Journal of Clinical Investigation 9, 659–677.
Studies in parathyroid physiology II. The relation of the serum calcium to the serum phosphorus at different levels of parathyroid activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXit1Smtw%3D%3D&md5=6eb6d83d72e5fd9671dd29c616dcca02CAS |

Albright F, Bauer W, Claflin D, Cockrill JR (1932) Studies in parathyroid physiology III. The effect of phosphate ingestion in clinical hyperparathyroidism. The Journal of Clinical Investigation 11, 411–435.
Studies in parathyroid physiology III. The effect of phosphate ingestion in clinical hyperparathyroidism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XkvFGltw%3D%3D&md5=493c15846b1c667a9d0fbfc52bbc69dfCAS |

Allen MJ (2003) Biochemical markers of bone metabolism in animals: uses and limitations. Veterinary Clinical Pathology 32, 101–113.
Biochemical markers of bone metabolism in animals: uses and limitations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1Sgsw%3D%3D&md5=36f1c99adadbd446ea02f417065c49ccCAS |

Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL, Dhamyamraju R (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. American Journal of Pathology 164, 841–847.
Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitl2jtr0%3D&md5=d066e68ab0d416838532ec870494a572CAS |

Anderson ST, McNeill DM, Castells L, Spiers JG, Kidd LJ, Goodwin K, Fletcher MT, Dixon RM (2016a) Novel physiological responses in phosphorus deficient beef cows. In ‘Proceedings 67th annual meeting of the European Federation of Animal Science’, 29 August – 2 September 2016, Belfast, UK.

Anderson ST, Benvenutti M, Spiers JG, Goodwin KL, Kidd L, Fletcher MT, Dixon RM (2016b) CTX-1 as a diagnostic marker of bone mobilisation in Bos indicus cows. In ‘Proceedings northern beef research update conference’, 15–18 August 2016, Rockhampton, Australia.

Anderson ST, Benvenutti M, Spiers JG, Goodwin K, Kidd L, Fletcher MT, Dixon RM (2017) New insights into the physiology of mineral homeostasis in lactation from beef cows. In ‘Proceedings of the European Association for Animal Production’, 28 August – 1 September 2017, Tallin, Estonia.

Andrews AH, Blowey RW, Boyd H, Eddy RG (2008) ‘Bovine medicine.’ (John Wiley & Sons, Incorporated: Chichester, UK)

Bansal VK (1990) Serum inorganic phosphorus. In ‘Clinical methods: the history, physical, and laboratory examinations’. 3rd edn. (Eds HK Walker, WD Hall, JW Hurst) (Butterworths: Boston, MA)

Barton BA, Jorgensen NA, DeLuca HF (1987) Impact of prepartum dietary phosphorus intake on calcium homeostasis at parturition. Journal of Dairy Science 70, 1186–1191.
Impact of prepartum dietary phosphorus intake on calcium homeostasis at parturition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFGksL0%3D&md5=6dc85e3182183402ad780b373f0221eaCAS |

Baylink D, Wergedal J, Stauffer M (1971) Formation, mineralization, and resorption of bone in hypophosphatemic rats. The Journal of Clinical Investigation 50, 2519–2530.
Formation, mineralization, and resorption of bone in hypophosphatemic rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtlSisA%3D%3D&md5=3e8f41792f8bd7e2d1122979c9d22fc2CAS |

Beighle DE (1999) The effect of gestation and lactation on bone calcium, phosphorus and magnesium in dairy cows. Journal of the South African Veterinary Association 70, 142–146.
The effect of gestation and lactation on bone calcium, phosphorus and magnesium in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1yktrg%3D&md5=dc3312332fc1cea7d06ff915cf86d874CAS |

Beighle DE, Boyazoglu PA, Hemken RW (1993) Use of bovine rib bone in serial sampling for mineral analysis. Journal of Dairy Science 76, 1047–1052.
Use of bovine rib bone in serial sampling for mineral analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3ltlWntA%3D%3D&md5=950485dddef15274844e578d9af58d57CAS |

Belonje PC, Berg AVD (1980) The use of faecal analyses to estimate the phosphorus intake by grazing sheep. II. Repeatability of the technique and the influence of varying the phosphorus intake. The Onderstepoort Journal of Veterinary Research 47, 169–172.

Benvenutti, M, Dixon, RM, Goodwin, K, Kidd, LJ, Mayer, R, Fletcher, MT, Anderson, S. (2015) Responses of Bos indicus cows in early lactation to dietary phosphorus deficiency. In ‘Proceedings of recent advances in animal nutrition 2015’, Armidale, NSW, Australia. pp. 47–48.

Bienzle D, Jacobs RM, Lumsden JH (1993) Relationship of serum total calcium to serum albumin in dogs, cats, horses and cattle. The Canadian Veterinary Journal. La Revue Veterinaire Canadienne 34, 360–364.

Binswanger U, Feist E, Rich C (1971) Bone resorption without parathyroid hormone: influence of a low phosphorus diet. Zeitschrift für die Gesamte Experimentelle Medizin 156, 61–66.
Bone resorption without parathyroid hormone: influence of a low phosphorus diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtlSjsQ%3D%3D&md5=3723d2e47a016b833ee8f72b58adc344CAS |

Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clinical Journal of the American Society of Nephrology; CJASN 10, 1257–1272.
Renal control of calcium, phosphate, and magnesium homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1CmtrbO&md5=37750a7f975450b555921ea2908b3ec5CAS |

Blair-West JR, Denton DA, McKinley MJ, Radden BG, Ramshaw EH, Wark JD (1992) Behavioral and tissue responses to severe phosphorus depletion in cattle. The American Journal of Physiology 263, R656–R663.

Bourne MC, Campbell DA (1932) Variations of serum-calcium in the rabbit. The Biochemical Journal 26, 183–195.
Variations of serum-calcium in the rabbit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XjsVSgsQ%3D%3D&md5=e1cbcd67581f03c7dab16b2dc5be35ddCAS |

Braithwaite GD (1975) Studies on the absorption and retention of calcium and phosphorus by young and mature Ca-deficient sheep. British Journal of Nutrition 34, 311–324.
Studies on the absorption and retention of calcium and phosphorus by young and mature Ca-deficient sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlslOjtbk%3D&md5=5ddf4c55f0dc0c8cf4f81916a60ccb61CAS |

Braithwaite GD (1983) Calcium and phosphorus requirements of the ewe during pregnancy and lactation. 2. Phosphorus. British Journal of Nutrition 50, 723–736.
Calcium and phosphorus requirements of the ewe during pregnancy and lactation. 2. Phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFemt7o%3D&md5=78e75837a1df01a6d8cd3914a99910adCAS |

Breves G, Ross R, Höller H (1985) Dietary phosphorus depletion in sheep: effects on plasma inorganic phosphorus, calcium, l,25-(OH)2-Vit.D3 and alkaline phosphatase and on gastrointestinal P and Ca balances. The Journal of Agricultural Science 105, 623–629.
Dietary phosphorus depletion in sheep: effects on plasma inorganic phosphorus, calcium, l,25-(OH)2-Vit.D3 and alkaline phosphatase and on gastrointestinal P and Ca balances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xmslymsw%3D%3D&md5=2007cc71c01277d1dc696bcdff4826d3CAS |

Camassa JA, Diogo CC, Sousa CP, Azevedo JT, Viegas CA, Reis RL, Dourado N, Dias IR (2017) Bone turnover markers in sheep and goat: a review of the scientific literature. Anais da Academia Brasileira de Ciencias 89, 231–245.
Bone turnover markers in sheep and goat: a review of the scientific literature.Crossref | GoogleScholarGoogle Scholar |

Cashman KD, Flynn A (1999) Optimal nutrition: calcium, magnesium and phosphorus. The Proceedings of the Nutrition Society 58, 477–487.
Optimal nutrition: calcium, magnesium and phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFyms7g%3D&md5=e87079582ba4de58d52ae858571d115aCAS |

Castillo L, Tanaka Y, DeLuca HF (1975) The mobilization of bone mineral by 1,25-dihydroxyvitamin D3 in hypophosphatemic rats. Endocrinology 97, 995–999.
The mobilization of bone mineral by 1,25-dihydroxyvitamin D3 in hypophosphatemic rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXmtVahsLg%3D&md5=e7ae3fc0364a3147a14309f7f312c1e2CAS |

Chubb SA (2012) Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clinical Biochemistry 45, 928–935.
Measurement of C-terminal telopeptide of type I collagen (CTX) in serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFCis7c%3D&md5=bede51ecd6531a89f1b084a6c352e170CAS |

Coates DB (1994) Effect of phosphorus as fertiliser or supplement on pasture and cattle producitivty in the semi-arid tropics of north Queensland. Tropical Grasslands 28, 90–108.

Cohen RDH (1973) Relation of pasture phosphorus to phosphorus content of blood, hair and bone of grazing steers. Australian Journal of Experimental Agriculture and Animal Husbandry 13, 5–8.
Relation of pasture phosphorus to phosphorus content of blood, hair and bone of grazing steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhsVKmt7Y%3D&md5=909b7022cfe7eb517f6283a2e0395fe9CAS |

Cohen RDH (1974) The use of faecal and blood phosphorus for the estimation of phosphorus intake. Australian Journal of Experimental Agriculture and Animal Husbandry 14, 709–715.
The use of faecal and blood phosphorus for the estimation of phosphorus intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXps1Oitw%3D%3D&md5=2e5804690e7217cc3d14d6dcc8e34fccCAS |

Cohen RDH (1980) Phosphorus in rangeland ruminant nutrition: a review. Livestock Production Science 7, 25–37.
Phosphorus in rangeland ruminant nutrition: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtV2msr0%3D&md5=48d6b3989c71d4400809504f2a90ffb2CAS |

Craig LE, Dittmer KE, Thompson KG (2016) Chapter 2. Bones and joints. In ‘Jubb, Kennedy & Palmer’s pathology of domestic animals: vol. 1’. 6th edn. (Ed. G Maxie) pp. 16–163. (Elsevier: St Louis, MO)

CSIRO (2007) ‘Nutrient requirements of domesticated ruminants.’ (CSIRO Publishing: Melbourne)

DeGaris PJ, Lean IJ (2008) Milk fever in dairy cows: a review of pathophysiology and control principles. Veterinary Journal (London, England) 176, 58–69.
Milk fever in dairy cows: a review of pathophysiology and control principles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Srtr8%3D&md5=117a98c32d896390aafeaa297d6a2de8CAS |

Dias RS, López S, Patiño RMP, Silva TS, Silva Filho JC, Vitti DMSS, Peçanha MRSR, Kebreab E, France J (2011) An extended model of phosphorus metabolism in growing ruminants. Journal of Animal Science 89, 4151–4162.
An extended model of phosphorus metabolism in growing ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SqtbnO&md5=76034d2cf0e5d27f70b816c6d43c00bcCAS |

Dixon RM, Benvenutti M, Goodwin K, Kidd L, Anderson ST, Mayer R, Fletcher MT (2016) Effects of dietary P intake during late pregnancy and early lactation on performance of mature Droughtmaster cows. In ‘Proceedings of the northern beef research update conference’, 15–18 August 2016, Rockhampton, Qld, Australia.

Dixon RM, Kidd LJ, Coates DB, Anderson ST, Benvenutti MA, Fletcher MT, McNeill DM (2017) Utilising mobilisation of body reserves to improve the management of phosphorus nutrition of breeder cows. Animal Production Science
Utilising mobilisation of body reserves to improve the management of phosphorus nutrition of breeder cows.Crossref | GoogleScholarGoogle Scholar |

Dokovic RD, Kurcubic VS, Ilic ZZ (2014) Blood serum levels of macro- and micronutrients in transition and full lactation cows. Bulgarian Journal of Agricultural Science 20, 715–720.

Ekelund A, Spörndly R, Holtenius K (2006) Influence of low phosphorus intake during early lactation on apparent digestibility of phosphorus and bone metabolism in dairy cows. Livestock Science 99, 227–236.
Influence of low phosphorus intake during early lactation on apparent digestibility of phosphorus and bone metabolism in dairy cows.Crossref | GoogleScholarGoogle Scholar |

Ewer TK (1951) Rickets in sheep. 1. The experimental production of rickets in young sheep. British Journal of Nutrition 5, 287–300.
Rickets in sheep. 1. The experimental production of rickets in young sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XitFShug%3D%3D&md5=4572a87779b9c82154c09e3e717d6e88CAS |

Field AC, Suttle NF, Nisbet DI (1975) Effect of diets low in calcium and phosphorus on the development of growing lambs. Journal of Agricultural Science Cambridge 85, 435–442.
Effect of diets low in calcium and phosphorus on the development of growing lambs.Crossref | GoogleScholarGoogle Scholar |

Filipović N, Stojevic Z, Zdelar-Tuk M, Kusec V (2008) Plasma parathyroid hormone-related peptide and bone metabolism in periparturient dairy cows. Acta Veterinaria Hungarica 56, 235–244.
Plasma parathyroid hormone-related peptide and bone metabolism in periparturient dairy cows.Crossref | GoogleScholarGoogle Scholar |

Fletcher MT, Goodwin KL, Benvenutti M, Reid DJ, Anderson ST, Kidd L, Dixon RM (2016) Blood sampling for P screen: tail versus jugular. In ‘Proceedings of the northern beef research update conference, 15–18 August 2016, Rockhampton, Qld, Australia.

Forar FL, Kincaid RL, Preston RL, Hillers JK (1982) Variation of inorganic phosphorus in blood plasma and milk of lactating cows. Journal of Dairy Science 65, 760–763.
Variation of inorganic phosphorus in blood plasma and milk of lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvV2ksrg%3D&md5=4496815c6cc947ece0d11211290baba6CAS |

Fraser AH (1932) The reciprocal relationship of calcium and inorganic phosphorus of the blood of sheep. The Biochemical Journal 26, 2166–2168.
The reciprocal relationship of calcium and inorganic phosphorus of the blood of sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXjs1SitA%3D%3D&md5=f7438d0a0a17e62a91ac8408085bfb21CAS |

Fraser DR (1980) Regulation of the metabolism of vitamin D. Physiological Reviews 60, 551–613.

Gahne B (1967) Alkaline phosphatase isoenzymes in serum, seminal plasma and tissues of cattle. Hereditas 57, 83–99.
Alkaline phosphatase isoenzymes in serum, seminal plasma and tissues of cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c7is12hsw%3D%3D&md5=b84380302719f355b7ec1debb307a4a8CAS |

Gartner RJ, Ryley JW, Beattie AW (1965) The influence of degree of excitation on certain blood constituents in beef cattle. The Australian Journal of Experimental Biology and Medical Science 43, 713–724.
The influence of degree of excitation on certain blood constituents in beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287ltFKmsA%3D%3D&md5=3c162e8854aba610debda3d2118e3624CAS |

Gartner RJW, Murphy GM, Hoey WA (1982) Effects of induced, subclinical phosphorus deficiency on feed intake and growth of beef heifers. Journal of Agricultural Science Cambridge 98, 23–29.
Effects of induced, subclinical phosphorus deficiency on feed intake and growth of beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XitFKns7s%3D&md5=51237a3a531fd12de2bf340296ee72fcCAS |

Goff JP (2000) Pathophysiology of calcium and phosphorus disorders. The Veterinary Clinics of North America. Food Animal Practice 16, 319–337.
Pathophysiology of calcium and phosphorus disorders.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvmvVGhtg%3D%3D&md5=f5a816c5fd06b4f8841da278e02d3d5eCAS |

Goff JP (2006) Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders. Animal Feed Science and Technology 126, 237–257.
Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other periparturient mineral disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Orurg%3D&md5=fdeac984566762a4fc7775fd03528a6cCAS |

Goff JP (2008) Phosphorus deficiency. In ‘Current veterinary therapy. Food animal practice’. 5th edn. (Eds DE Anderson, M Rings). pp. 135–136. (Saunders: New York)

Golub EE (2009) Role of matrix vesicles in biomineralization. Biochimica et Biophysica Acta 1790, 1592–1598.
Role of matrix vesicles in biomineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqsrrO&md5=f82964e6a5aa4f9b8a942f7bfaf8d214CAS |

Grünberg W (2014) Treatment of phosphorus balance disorders. The Veterinary Clinics of North America. Food Animal Practice 30, 383–408.
Treatment of phosphorus balance disorders.Crossref | GoogleScholarGoogle Scholar |

Hemingway RG (1967) Phosphorus and the ruminant. Outlook on Agriculture 5, 172–180.
Phosphorus and the ruminant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXptl2itw%3D%3D&md5=5e7fa85089d16f3f36313b732bcbd728CAS |

Herrmann M (2011) Methods in bone biology in animals: biochemical markers. In ‘Osteoporosis research: animal models’. (Eds G Duque, K Watanabe) pp. 57–82. (Springer London: London)

Hlaing TT, Compston JE (2014) Biochemical markers of bone turnover: uses and limitations. Annals of Clinical Biochemistry 51, 189–202.
Biochemical markers of bone turnover: uses and limitations.Crossref | GoogleScholarGoogle Scholar |

Hoffmann WE, Solter PF (2008) Chapter 12. Diagnostic enzymology of domestic animals A2. In ‘Clinical biochemistry of domestic animals’. 6th edn. (Eds JJ Kaneko, JW Harvey, ML Bruss) pp. 351–378. (Academic Press: San Diego, CA)

Horst RL, Reinhardt TA (1983) Vitamin D metabolism in ruminants and its relevance to the periparturient cow. Journal of Dairy Science 66, 661–678.
Vitamin D metabolism in ruminants and its relevance to the periparturient cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitFCntrs%3D&md5=cf1f827b309adb788a48279082a1ddc8CAS |

Horst RL, Goff JP, Reinhardt TA (2005) Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow. Journal of Mammary Gland Biology and Neoplasia 10, 141–156.
Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow.Crossref | GoogleScholarGoogle Scholar |

Howland J, Kramer B (1922) Factors concerned in the calcification of bone. Transrcipts of the American Society of Pediatrics 34, 204–208.

Jackson PGG, Cockcroft PD (2002) ‘Clinical examination of farm animals.’ (Wiley-Blackwell: Oxford)

Jonsson NN, Fortes MR, Piper EK, Vankan DM, de Cisneros JP, Wittek T (2013) Comparison of metabolic, hematological, and peripheral blood leukocyte cytokine profiles of dairy cows and heifers during the periparturient period. Journal of Dairy Science 96, 2283–2292.
Comparison of metabolic, hematological, and peripheral blood leukocyte cytokine profiles of dairy cows and heifers during the periparturient period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVShurg%3D&md5=49562ea3e1f057daa1c911d1d4d532e1CAS |

Jorgensen NA (1974) Combating milk fever. Journal of Dairy Science 57, 933–944.
Combating milk fever.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsVKluw%3D%3D&md5=ebf23d951b086ccfd3f49d088dd87644CAS |

Kaplan MM (1972) Alkaline phosphatase. The New England Journal of Medicine 286, 200–202.
Alkaline phosphatase.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE38%2Fntl2ruw%3D%3D&md5=d7914a4994a187a3de981195f8ba9398CAS |

Karn JF (2001) Phosphorus nutrition of grazing cattle: a review. Animal Feed Science and Technology 89, 133–153.
Phosphorus nutrition of grazing cattle: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wnu7w%3D&md5=e06b43aa607fef2586abec9826e392e9CAS |

Kichura TS, Horst RL, Beitz DC, Littledike ET (1982) Relationships between prepartal dietary calcium and phosphorus, vitamin D metabolism, and parturient paresis in dairy cows. The Journal of Nutrition 112, 480–487.

Kidd LJ, Poppi DP, McNeill DM, Quigley SP (2014) The use of tuber coxae bone biopsy to examine bone structure in growing Bos indicus steers fed diets with different dietary phosphorus content. In ‘Proceedings of world buiatrics conference’, 27 July – 1 August 2014, Cairns, Qld, Australia.

Kidd LJ, Dixon RM, Quigley SP, McNeill DM, Poppi DP, Castells L, Fletcher MT, Goodwin KL, Anderson ST (2016) The use of serial bone biopsies to investigate phosphorus deficiency in growing, pregnant and lactating cattle. In ‘Proceedings of Australian and New Zealand Bone and Mineral Society annual conference’, 21–24 August 2016, Gold Coast, Qld, Australia.

Kim D, Yamagishi N, Ueki A, Miura M, Saito F, Sato S, Furuhama K (2010) Changes in plasma bone metabolic markers in periparturient dairy cows. The Journal of Veterinary Medical Science 72, 773–776.
Changes in plasma bone metabolic markers in periparturient dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslCrtLg%3D&md5=39ce0bb7e19494d62709668eec49871bCAS |

Knochel JP (1977) The pathophysiology and clinical characteristics of severe hypophosphatemia. Archives of Internal Medicine 137, 203–220.
The pathophysiology and clinical characteristics of severe hypophosphatemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXoslWitw%3D%3D&md5=e8722078e60de628dff517e9429fa289CAS |

Knochel JP (1981) Hypophosphatemia. The Western Journal of Medicine 134, 15–26.

Knowlton KF, Herbein JH (2002) Phosphorus partitioning during early lactation in dairy cows fed diets varying in phosphorus content. Journal of Dairy Science 85, 1227–1236.
Phosphorus partitioning during early lactation in dairy cows fed diets varying in phosphorus content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFWjsrg%3D&md5=5abb449e495e5be1de5d4218a8ebff24CAS |

Kovacs CS (2016) Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiological Reviews 96, 449–547.
Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlvVWms7w%3D&md5=02f3c4d6a14b11dbcc48a944b28c1ed1CAS |

Kunkel HO, Stokes DK, Anthony WB, Futrell MF (1953) Serum alkaline phosphatase activity in European and Brahman breeds of cattle and their crossbred types. Journal of Animal Science 12, 765–770.
Serum alkaline phosphatase activity in European and Brahman breeds of cattle and their crossbred types.Crossref | GoogleScholarGoogle Scholar |

Lappeteläinen R, Lappeteläinen E, Hassinen T, Hahl M, Pirskanen A, Maenpaa PH (1993) Biochemical indicators of bone metabolic activity in bovine periparturient hypocalcemia. Zentralblatt fur Veterinarmedizin. Reihe A. 40, 67–72.
Biochemical indicators of bone metabolic activity in bovine periparturient hypocalcemia.Crossref | GoogleScholarGoogle Scholar |

Liesegang A (2008) Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep. Journal of Dairy Science 91, 2449–2460.
Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWmur4%3D&md5=c779270db989afe8a868f623d5d9498aCAS |

Liesegang A, Sassi ML, Risteli J, Eicher R, Wanner M, Riond JL (1998) Comparison of bone resorption markers during hypocalcemia in dairy cows. Journal of Dairy Science 81, 2614–2622.
Comparison of bone resorption markers during hypocalcemia in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntF2rtrY%3D&md5=83f979e147b83a393f4014d321f9819aCAS |

Liesegang A, Ursprung R, Gasser J, Sassi ML, Risteli J, Riond JL, Wanner M (2002) Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters. Journal of Animal Physiology and Animal Nutrition 86, 1–16.
Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVyjs74%3D&md5=0adb9b56cedbaed6d9fefc9afcb1b901CAS |

Liesegang A, Risteli J, Wanner M (2006) The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep. Bone 38, 794–802.
The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVenu7g%3D&md5=ea00fdd123b2512da2b4d03b3296df46CAS |

Lincoln SD, Lane VM (1990) Serum ionized calcium concentration in clinically normal dairy cattle, and changes associated with calcium abnormalities. Journal of the American Veterinary Medical Association 197, 1471–1474.

Little DA (1984) Definition of an objective criterion of body phosphorus reserves in cattle and its evaluation in vivo. Canadian Journal of Animal Science 64, 229–231.
Definition of an objective criterion of body phosphorus reserves in cattle and its evaluation in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmt1Kgsrw%3D&md5=6e4b128d2daf62768b2fa3a6a546cab5CAS |

Littledike ET, Goff J (1987) Interactions of calcium, phosphorus, magnesium and vitamin D that influence their status in domestic meat animals. Journal of Animal Science 65, 1727–1743.
Interactions of calcium, phosphorus, magnesium and vitamin D that influence their status in domestic meat animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsVSqtg%3D%3D&md5=cb883b6d75ab7a3902a61042173d3885CAS |

Matsuo A, Togashi A, Sasaki K, Devkota B, Hirata T, Yamagishi N (2014) Diurnal variation of plasma bone markers in Japanese black calves. The Journal of Veterinary Medical Science 76, 1029–1032.
Diurnal variation of plasma bone markers in Japanese black calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yitLnE&md5=7f548a09c81385a9f0245fe49d1b3056CAS |

McComb RB, Bowers GN, Jr, Posen S (1979) Utilisation of alkaline phosphatase measurements in veterinary practice. In ‘Alkaline phosphatase’. (Eds RB McComb, Jr GN Bowers, S Posen) pp. 787–850. (Plenum Press: New York)

McCosker T, Winks L (1994). ‘Phosphorus nutrition of beef cattle in northern Australia.’ (Department of Primary Industries: Brisbane)

McNeill DM, Anderson ST, Kidd LJ, Quigley SP, Lisle AT, Poppi DP (2016) Parathyroid hormone response to long-term phosphorus supplementation in steers. In ‘Proceedings of 67th annual meeting of the European Federation of Animal Science’, 29 August – 2 September 2016, Belfast, UK.

Mohebbi A, Khaghani A, Mohammadnia A (2010) Bone-specific alkaline phosphatase activity in dairy cows. Comparative Clinical Pathology 19, 33–36.
Bone-specific alkaline phosphatase activity in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvF2qug%3D%3D&md5=638bac9d3b9ca659d7068059d0c7aae4CAS |

Moore SJ, VandeHaar MJ, Sharma BK, Pilbeam TE, Beede DK, Bucholtz HF, Liesman JS, Horst RL, Goff JP (2000) Effects of altering dietary cation–anion difference on calcium and energy metabolism in peripartum cows. Journal of Dairy Science 83, 2095–2104.
Effects of altering dietary cation–anion difference on calcium and energy metabolism in peripartum cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFKitL4%3D&md5=111463d31700cf86045157a72b52a331CAS |

O’Neill WC (2007) The fallacy of the calcium–phosphorus product. Kidney International 72, 792–796.
The fallacy of the calcium–phosphorus product.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKhs7vE&md5=74f9dba926f09a1f8061c45380c7da88CAS |

Oetzel GR, Goff JP (2008) Milk fever (parturient paresis) in cows, ewes and doe goats. In ‘Current veterinary therapy. Food animal practice’. 5th edn. (Eds DE Anderson, M Rings) pp. 130–134. (Saunders: New York)

Onda K, Sato A, Yamaguchi M, Matsuki N, Ono K, Wada Y (2006) Parathyroid hormone-related protein (PTHrP) and Ca levels in the milk of lactating cows. The Journal of Veterinary Medical Science 68, 709–713.
Parathyroid hormone-related protein (PTHrP) and Ca levels in the milk of lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xptlejsb4%3D&md5=1820253384dbf62faef0ff3076f62269CAS |

Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. Journal of Nippon Medical School 77, 4–12.
The mechanism of mineralization and the role of alkaline phosphatase in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Oqtbo%3D&md5=fd0135d65ab635e93b8bdc0ade150feeCAS |

Palmer LS, Cunningham WS, Eckles CH (1930) Normal variations in the inorganic phosphorus of the blood of dairy cattle. Journal of Dairy Science 13, 174–195.
Normal variations in the inorganic phosphorus of the blood of dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3cXksVGlug%3D%3D&md5=6d821946661057feec5ca071666dd07cCAS |

Parfitt AM (2003) Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone 33, 259–263.
Misconceptions (3): calcium leaves bone only by resorption and enters only by formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Gls7c%3D&md5=a479cfc719f4ba98224bd172b493ba7dCAS |

Parfitt AM, Villanueva AR (1982) Hypophosphatemia and osteoblast function in human bone disease. Advances in Experimental Medicine and Biology 151, 209–216.
Hypophosphatemia and osteoblast function in human bone disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2Fps1yhug%3D%3D&md5=fa3e5d95cb098f5cea6cfc4741eee770CAS |

Peterson AB, Orth MW, Goff JP, Beede DK (2005) Periparturient responses of multiparous Holstein cows fed different dietary phosphorus concentrations prepartum. Journal of Dairy Science 88, 3582–3594.
Periparturient responses of multiparous Holstein cows fed different dietary phosphorus concentrations prepartum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKntrbL&md5=695371d247669ffb22c550843e21a70bCAS |

Pfeffer E, Beede DK, Valk H (2005) Phosphorus metabolism in ruminants and requirements of cattle. In ‘Nitrogen and phosphorus nutrition in cattle’. (Eds E Pfeffer, AN Hristov) pp. 195–231. (CAB International: Wallingford, UK)

Puggaard L, Lund P, Liesegang A, Sehested J (2014) Long-term effect of reduced dietary phosphorus on feed intake and milk yield in dry and lactating dairy cows. Livestock Science 159, 18–28.
Long-term effect of reduced dietary phosphorus on feed intake and milk yield in dry and lactating dairy cows.Crossref | GoogleScholarGoogle Scholar |

Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, Wysolmerski J, Bonewald LF (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. Journal of Bone and Mineral Research 27, 1018–1029.
Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1ejsrw%3D&md5=7b72cd951550ee04865a14e3bb7c298aCAS |

Quigley SP, Isherwood P, Milton JTB, Costa DFA, Kidd LJ, Poppi DP (2016) The concentration of phosphorus in plasma and serum collected from Bos indicus crossbred steers over a wide range of phosphorus intakes. In ‘Proceedings of the northern beef research update conference’, 15–18 August 2016, Rockhampton, Qld, Australia.

Raisz LG, Niemann I (1969) Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85, 446–452.
Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkvF2mtbs%3D&md5=bdbd5fcc2f10a710a586aac62f9e4da0CAS |

Ramberg CF, Mayer GP, Kronfeld DS, Phang JM, Berman M (1970) Calcium kinetics in cows during late pregnancy, parturition, and early lactation. The American Journal of Physiology 219, 1166–1177.

Rodehutscord M, Pauen A, Windhausen P, Brintrup R, Pfeffer E (1994) Effects of drastic changes in P intake on P concentrations in blood and rumen fluid of lactating ruminants. Zentralblatt fur Veterinarmedizin. Reihe A. 41, 611–619.
Effects of drastic changes in P intake on P concentrations in blood and rumen fluid of lactating ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFSnsLo%3D&md5=97f961570f872cd20d40a776d3cdace5CAS |

Rollinson DHL, Bredon RM (1960) Factors causing alterations of the level of inorganic phosphorus in the blood of zebu cattle. The Journal of Agricultural Science 54, 235–242.
Factors causing alterations of the level of inorganic phosphorus in the blood of zebu cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXoslWlsA%3D%3D&md5=f30237dd8e7ca5ceb99d1e1a4d27a13aCAS |

Rosol TJ, Capen CC (1997) Calcium-regulating hormones and diseases of abnormal mineral (calcium, phosphorus, magnesium) metabolism. In ‘Clinical biochemistry of domestic animals’. 5th edn. (Eds JJ Kaneko, JW Harvey, ML Bruss) pp. 619–702. (Academic Press: San Diego, CA)

Sato J, Kanata M, Yasuda J, Sato R, Okada K, Seimiya Y, Naito Y (2005) Changes of serum alkaline phosphatase activity in dry and lactational cows. The Journal of Veterinary Medical Science 67, 813–815.
Changes of serum alkaline phosphatase activity in dry and lactational cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrt7vN&md5=7a1a9df223bd67278fd02b9759d743abCAS |

Sato R, Onda K, Kato H, Ochiai H, Kawai K, Iriki T, Kaneko K, Yamazaki Y, Wada Y (2013) An evaluation of the effect of age and the peri-parturient period on bone metabolism in dairy cows as measured by serum bone-specific alkaline phosphatase activity and urinary deoxypyridinoline concentration. Veterinary Journal (London, England) 197, 358–362.
An evaluation of the effect of age and the peri-parturient period on bone metabolism in dairy cows as measured by serum bone-specific alkaline phosphatase activity and urinary deoxypyridinoline concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyksL0%3D&md5=594d08a882727a49995c64b5cf4b23ebCAS |

Scott D, Loveridge N, Nicodemo L, Buchan W, Milne J, Duncan A, Nicol P, Robins SP (1997) Effect of diets varying in nitrogen or phosphorus content on indicators of bone growth in lambs. Experimental Physiology 82, 193–202.
Effect of diets varying in nitrogen or phosphorus content on indicators of bone growth in lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlWmu70%3D&md5=3dcb08380671a54f4b3037d8bb6a276aCAS |

Seibel MJ (2005) Biochemical markers of bone turnover, part I: biochemistry and variability. The Clinical Biochemist. Reviews/Australian Association of Clinical Biochemists 26, 97–122.

Seibel MJ (2006) Biochemical markers of bone turnover, part II: clinical applications in the management of osteoporosis. The Clinical Biochemist. Reviews/Australian Association of Clinical Biochemists 27, 123–138.

Seifi HA, Mohri M, Ehsani A, Hosseini E, Chamsaz M (2005) Interpretation of bovine serum total calcium: effects of adjustment for albumin and total protein. Comparative Clinical Pathology 14, 155–159.
Interpretation of bovine serum total calcium: effects of adjustment for albumin and total protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagsb3E&md5=a2e3ea5a6772aff8f5e2d76787aca40bCAS |

Shipley PG, Kramer B, Howland J (1926) Studies upon calcification in vitro. The Biochemical Journal 20, 379–387.
Studies upon calcification in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB28XitVKmtQ%3D%3D&md5=7219c13996ef02c2931463621cd89a94CAS |

Ternouth JH (1990) Phosphorus and beef production in northern Australia. 3. Phosphorus in cattle: a review. Tropical Grasslands 24, 154–169.

Theiler A, Green HH, du Toit PJ (1927) Minimum mineral requirements in cattle. The Journal of Agricultural Science 17, 291–314.
Minimum mineral requirements in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2sXisFWnsQ%3D%3D&md5=9a3e9346922fdc82515b50a1d64fcbfbCAS |

Theiler A, Du Toit PJ, Malan AI (1937) The influence of variations in the dietary phosphorus and in the Ca : P ratio on the production of rickets in cattle. The Onderstepoort Journal of Veterinary Science and Animal Industry 8, 375–414.

Valk H, Sebek LB, Beynen AC (2002) Influence of phosphorus intake on excretion and blood plasma and saliva concentrations of phosphorus in dairy cows. Journal of Dairy Science 85, 2642–2649.
Influence of phosphorus intake on excretion and blood plasma and saliva concentrations of phosphorus in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlCms7w%3D&md5=365229cb3e3ebeb405252854d7e71506CAS |

Wadsworth JC, McLean RW, Coates DB, Winter WH (1990) Phosphorus and beef production in northern Australia. 5. Animal phosphorus status and diagnosis. Tropical Grasslands 24, 185–196.

Winks L (1990) Phosphorus and beef production in northern Australia. 2. Responses to phosphorus status by ruminants: a review. Tropical Grasslands 24, 140–158.

Wysolmerski JJ (2010) Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation. Annals of the New York Academy of Sciences 1192, 161–169.
Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVSrsbo%3D&md5=33b390abd9a0c1003fa60aeb4fb5d6d8CAS |

Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE, Philbrick WM (1995) Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121, 3539–3547.

Yamagishi N, Takehana K, Kim D, Miura M, Hirata T, Devkota B, Sato S, Furuhama K (2009) Fluorometric method for measuring plasma tartrate-resistant acid phosphatase isoform 5b and its application in cattle. The Journal of Veterinary Medical Science 71, 1637–1642.
Fluorometric method for measuring plasma tartrate-resistant acid phosphatase isoform 5b and its application in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOltLw%3D&md5=644210032ce3310ad674d8dc208a3bf7CAS |