Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Dietary fibre and crude protein: impact on gastrointestinal microbial fermentation characteristics and host response

R. Pieper A B , W. Vahjen A and J. Zentek A
+ Author Affiliations
- Author Affiliations

A Institute of Animal Nutrition, Freie Universität Berlin, D-14195, Germany.

B Corresponding author. Email: robert.pieper@fu-berlin.de

Animal Production Science 55(12) 1367-1375 https://doi.org/10.1071/AN15278
Submitted: 4 June 2015  Accepted: 11 September 2015   Published: 16 October 2015

Abstract

The role of the gastrointestinal tract microbiota in animal health and nutrition has become the subject of intensive research. Carbohydrates and crude protein are major components of swine diets and numerous studies have been performed looking at the effect of inclusion of dietary fibre with possible functional properties. In recent years, our understanding of the diversity and functionality of the gastrointestinal tract microbiota has increased further enabling the possibility for their targeted modulation. However, favouring potential beneficial bacteria, inhibiting possible pathogens or promotion of the formation of desired metabolites, is complex and underlies many factors and uncertainties. Approaches targeting this complex ecosystem (and discussed in this review) include the utilisation of fermentable carbohydrates such as resistant starch, cereal 1–3/1–4 β-glucans, arabinoxylans, inulin or other sources from legumes and industrial by-products. In addition, strategies regarding protein level and the protein : carbohydrate ratio are discussed briefly. Results are both promising and sometimes rather disillusioning considering the dietary concentrations needed to show biologically relevant effects. Deriving recommendations for an optimal inclusion rate of dietary fibre for weaning, growing pigs and sows and maximum levels for dietary crude protein may be one of the main challenges in the near future in the swine industry.

Additional keywords: animal health, gut ecology, nutrition, pigs.


References

Anguita M, Canibe N, Perez JF, Jensen BB (2006) Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. Journal of Animal Science 84, 2766–2778.
Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVartL7N&md5=1156a6c9e12ea1c8a374e36e19dfa10aCAS | 16971578PubMed |

Anguita M, Gasa J, Nofrarias M, Martin-Orue SM, Perez JF (2007) Effect of coarse ground corn, sugar beet pulp and wheat bran on the voluntary intake and physicochemical characteristics of digesta of growing pigs. Livestock Science 107, 182–191.
Effect of coarse ground corn, sugar beet pulp and wheat bran on the voluntary intake and physicochemical characteristics of digesta of growing pigs.Crossref | GoogleScholarGoogle Scholar |

Awati A, Williams BA, Bosch MW, Gerrits WJJ, Verstegen MWA (2006) Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets. Journal of Animal Science 84, 2133–2140.
Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Onurg%3D&md5=bb0e831709579317a0c57d442eeff064CAS | 16864874PubMed |

Bach Knudsen KE (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67, 319–338.
Carbohydrate and lignin contents of plant materials used in animal feeding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVWitbw%3D&md5=1a64b6b43ab1350297045ec709464362CAS |

Bach Knudsen KE (2012) Lactose in diet influences the degradation of mixed linked beta(1–3;1–4)-D-glucan in the small intestine of pigs. Journal of Animal Science 90, 125–127.
Lactose in diet influences the degradation of mixed linked beta(1–3;1–4)-D-glucan in the small intestine of pigs.Crossref | GoogleScholarGoogle Scholar | 23365304PubMed |

Bach Knudsen KE, Hedemann MS, Laerke HN (2012) The role of carbohydrates in intestinal health of pigs. Animal Feed Science and Technology 173, 41–53.
The role of carbohydrates in intestinal health of pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVelsr8%3D&md5=022bbc870ceb6d6f107bd28ba6e0a8a6CAS |

Baert K, Sonck E, Goddeeris BM, Devriendt B, Cox E (2015) Cell type-specific differences in beta-glucan recognition and signalling in porcine innate immune cells. Developmental and Comparative Immunology 48, 192–203.
Cell type-specific differences in beta-glucan recognition and signalling in porcine innate immune cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVams7rI&md5=146257345e6817a8ddf768646fdbdbcaCAS | 25453580PubMed |

Bartelt J, Jadamus A, Wiese F, Swiech E, Buraczewska L, Simon O (2002) Apparent precaecal digestibility of nutrients and level of endogenous nitrogen in digesta of the small intestine of growing pigs as affected by various digesta viscosities. Archives of Animal Nutrition 56, 93–107.

Bedford MR, Schulze H (1998) Exogenous enzymes for pigs and poultry. Nutrition Research Reviews 11, 91–114.
Exogenous enzymes for pigs and poultry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ejt7Y%3D&md5=1ee1df20e52919faed55d3cb1592acd7CAS | 19087461PubMed |

Berrocoso JD, Menoyo D, Guzmán P, Saldana B, Cámara L, Mateos GG (2015) Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal and poor hygienic conditions. Journal of Animal Science
Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal and poor hygienic conditions.Crossref | GoogleScholarGoogle Scholar | 26440172PubMed | in press.

Bikker P, Dirkzwager A, Fledderus J, Trevisi P, le Huerou-Luron I, Lalles JP, Awati A (2006) The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. Journal of Animal Science 84, 3337–3345.
The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CnurnE&md5=39e2f71986c086ad2275588979cd98f4CAS | 17093226PubMed |

Bindelle J, Buldgen A, Delacollette M, Wavreille J, Agneessens R, Destain JP, Leterme P (2009) Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Journal of Animal Science 87, 583–593.
Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFGnsrk%3D&md5=e342ab3d1d804cca59de0614352dcb4eCAS | 18791157PubMed |

Bindelle J, Pieper R, Montoya CA, Van Kessel AG, Leterme P (2011) Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. FEMS Microbiology Ecology 76, 553–563.
Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Cgsrg%3D&md5=afbb8b072250807ab73a76b3f691ab33CAS | 21348887PubMed |

Bird AR, Vuaran M, Brown I, Topping DL (2007) Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. British Journal of Nutrition 97, 134–144.
Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFGktrY%3D&md5=ae39eea1aa4a9c6e3e5360c6a43f556fCAS | 17217569PubMed |

Blachier F, Mariotti F, Huneau JF, Tome D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33, 547–562.
Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSlsrnO&md5=bf98e5f5e2983cec1e2da9c86a1e3724CAS | 17146590PubMed |

Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, Benamouzig R, Bouillaud F, Tome D (2010) Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids 39, 335–347.
Luminal sulfide and large intestine mucosa: friend or foe?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaisbY%3D&md5=6a10864e0a1a6e7920f9ffd7854b78cfCAS | 20020161PubMed |

Bosscher D, Van Loo J, Franck A (2006) Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutrition Research Reviews 19, 216–226.
Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivF2ktr8%3D&md5=7e2e3c3671b5ca7488e7ac88fd8f4305CAS | 19079887PubMed |

Branner GR, Bohmer BM, Erhardt W, Henke J, Roth-Maier DA (2004) Investigation on the precaecal and faecal digestibility of lactulose and inulin and their influence on nutrient digestibility and microbial characteristics. Archives of Animal Nutrition 58, 353–366.
Investigation on the precaecal and faecal digestibility of lactulose and inulin and their influence on nutrient digestibility and microbial characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Ojtrg%3D&md5=15aa68eac24023c3c0758ab4703ed372CAS | 15595619PubMed |

Brennan CS, Cleary LJ (2005) The potential use of cereal (1 -> 3,1 -> 4)-beta-D-glucans as functional food ingredients. Journal of Cereal Science 42, 1–13.
The potential use of cereal (1 -> 3,1 -> 4)-beta-D-glucans as functional food ingredients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1OitLk%3D&md5=4e02fbc56286e6ebcc879276b17e248fCAS |

Brown GD, Gordon S (2003) Fungal beta-glucans and mammalian immunity. Immunity 19, 311–315.
Fungal beta-glucans and mammalian immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsl2jt7w%3D&md5=3f8ca386076439d7f4995399c4a3b44dCAS | 14499107PubMed |

Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tome D (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacological Research 68, 95–107.
Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFarsw%3D%3D&md5=58820fc78a768cb456a767f5e2f0b95fCAS | 23183532PubMed |

de Lange CFM, Pluske J, Gong J, Nyachoti CM (2010) Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science 134, 124–134.
Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs.Crossref | GoogleScholarGoogle Scholar |

Dodd D, Mackie RI, Cann IKO (2011) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Molecular Microbiology 79, 292–304.
Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsl2qt7w%3D&md5=ec9d9660d1c5f057f68da65f2e3d38a7CAS | 21219452PubMed |

Drochner W, Kerler A, Zacharias B (2004) Pectin in pig nutrition, a comparative review. Journal of Animal Physiology and Animal Nutrition 88, 367–380.
Pectin in pig nutrition, a comparative review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCnu7Y%3D&md5=33514557ff94f32b82691ea5874008afCAS | 15584946PubMed |

Eberhard M, Hennig U, Kuhla S, Brunner RM, Kleessen B, Metges CC (2007) Effect of inulin supplementation on selected gastric, duodenal, and caecal microbiota and short chain fatty acid pattern in growing piglets. Archives of Animal Nutrition 61, 235–246.
Effect of inulin supplementation on selected gastric, duodenal, and caecal microbiota and short chain fatty acid pattern in growing piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVyrtLk%3D&md5=5d2eec57e4b271194f91cadd93d18bd9CAS | 17760302PubMed |

Ewaschuk JB, Johnson IR, Madsen KL, Vasanthan T, Ball R, Field CJ (2012) Barley-derived beta-glucans increases gut permeability, ex vivo epithelial cell binding to E. coli, and naive T-cell proportions in weanling pigs. Journal of Animal Science 90, 2652–2662.
Barley-derived beta-glucans increases gut permeability, ex vivo epithelial cell binding to E. coli, and naive T-cell proportions in weanling pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgs7rJ&md5=7f1d107a575539c56b197b69d6b9b990CAS | 22393029PubMed |

Fairbrother JM, Nadeau E, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews 6, 17–39.
Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGiurjI&md5=d401e4f190d0094c5cd0b0c9f736fb47CAS | 16164007PubMed |

Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306.
Microbial degradation of complex carbohydrates in the gut.Crossref | GoogleScholarGoogle Scholar | 22572875PubMed |

Giuberti G, Gallo A, Moschini M, Masoero F (2015) New insight into the role of resistant starch in pig nutrition. Animal Feed Science and Technology 201, 1–13.
New insight into the role of resistant starch in pig nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOgtLk%3D&md5=d1cd8c5bc8b804f48f234192afece3d9CAS |

Glitsø LV, Brunsgaard G, Hojsgaard S, Sandstrom B, Bach Knudsen KE (1998) Intestinal degradation in pigs of rye dietary fibre with different structural characteristics. British Journal of Nutrition 80, 457–468.

Glitsø LV, Gruppen H, Schols HA, Hojsgaard S, Sandstrom B, Bach Knudsen KE (1999) Degradation of rye arabinoxylans in the large intestine of pigs. Journal of the Science of Food and Agriculture 79, 961–969.
Degradation of rye arabinoxylans in the large intestine of pigs.Crossref | GoogleScholarGoogle Scholar |

Graham H, Hesselman K, Aman P (1986) The influence of wheat bran and sugar-beet pulp on the digestibility of dietary-components in a cereal-based pig diet. The Journal of Nutrition 116, 242–251.

Haberer B, Schulz E, Aulrich K, Flachowsky G (1999) Influence of NSP-degrading enzymes on pH, ammonia and volatile fatty acids concentration in the stomach and small intestine of growing pigs. Journal of Animal and Feed Sciences 8, 457–466.

Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJGC, Gutierrez OP, Smidt H, Kemp B, Muller M, Hooiveld GJEJ (2013) A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. The Journal of Nutrition 143, 274–283.
A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOgtbc%3D&md5=c46679cc51dcafafaa85689118a9d2b1CAS | 23325922PubMed |

Hahn TW, Lohakare JD, Lee SL, Moon WK, Chae BJ (2006) Effects of supplementation of beta-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs Journal of Animal Science 84, 1422–1428.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27, 104–119.
Review article: the role of butyrate on colonic function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVKrsbo%3D&md5=0971a2a6ae36dabded9ddbf2ab15a9e7CAS |

Hansen CF, Hernandez A, Mansfield J, Hidalgo A, La T, Phillips ND, Hampson DJ, Pluske JR (2011) A high dietary concentration of inulin is necessary to reduce the incidence of swine dysentery in pigs experimentally challenged with Brachyspira hyodysenteriae. British Journal of Nutrition 106, 1506–1513.
A high dietary concentration of inulin is necessary to reduce the incidence of swine dysentery in pigs experimentally challenged with Brachyspira hyodysenteriae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgurzJ&md5=ab3d46ab89b5e12282be21be18a98997CAS | 21736788PubMed |

Heo JM, Kim JC, Hansen CF, Mullan BP, Hampson DJ, Pluske JR (2009) Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli. Journal of Animal Science 87, 2833–2843.
Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSqu7bN&md5=c5cb7b9659a33faf51346df54580539bCAS | 19502498PubMed |

Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM (2013) Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition 97, 207–237.
Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlSjur0%3D&md5=afccdb5341bf1de491cd33ec414b1e87CAS | 22416941PubMed |

Hirsch K, Simon O, Vahjen W (2006) Einfluss eines Xylanase-Futterzusatzes auf Laktobazillus Spezies im Jejunum von Ferkeln. Berliner und Munchener Tierarztliche Wochenschrift 119, 486–492.

Holtekjølen AK, Uhlen AK, Brathen E, Sahlstrom S, Knutsen SH (2006) Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chemistry 94, 348–358.
Contents of starch and non-starch polysaccharides in barley varieties of different origin.Crossref | GoogleScholarGoogle Scholar |

Isaksson H, Tillander I, Andersson R, Olsson J, Fredriksson H, Webb DL, Aman P (2012) Whole grain rye breakfast – Sustained satiety during three weeks of regular consumption. Physiology & Behavior 105, 877–884.
Whole grain rye breakfast – Sustained satiety during three weeks of regular consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sgs7fP&md5=425aa8c4e87a7c730662854e732ba958CAS |

Ivarsson E, Roos S, Liu HY, Lindberg JE (2014) Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787.
Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGqsLvO&md5=37de4bd4d0a267c423f09684d4bce3efCAS | 25046106PubMed |

Janczyk P, Pieper R, Smidt H, Souffrant WB (2010) Effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions. FEMS Microbiology Ecology 72, 132–142.
Effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVOitLY%3D&md5=f3c1a5d2e56a9fc5ad3546ca284c4ae8CAS | 20059547PubMed |

Jha R, Rossnagel B, Pieper R, Van Kessel A, Leterme P (2010) Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal 4, 724–731.
Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVehtLc%3D&md5=598a38e30211ab37effe4ecd4ace4b35CAS | 22444125PubMed |

Jha R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P (2011) In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Animal Feed Science and Technology 163, 185–193.
In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjtr0%3D&md5=2dbb9695d762c9cc717441467524c415CAS |

Jonathan MC, Haenen D, Souza da Silva C, Bosch G, Schols HA, Gruppen H (2013) Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs. Carbohydrate Polymers 93, 232–239.
Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjsb3K&md5=0249ae6fa379784f79d610262f7f69bdCAS | 23465924PubMed |

Konstantinov SR, Awati A, Smidt H, Williams BA, Akkermans ADL, de Vos WA (2004) Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Applied and Environmental Microbiology 70, 3821–3830.
Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWnsLg%3D&md5=98a6a1727ceacab7802e7a541422c685CAS | 15240251PubMed |

Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nature Reviews. Microbiology 10, 323–335.

Kröger S, Pieper R, Schwelberger HG, Wang J, Villodre Tudela C, Aschenbach JR, Van Kessel AG, Zentek J (2013) Diets high in heat-treated soybean meal reduce the histamine-induced epithelial response in the colon of weaned piglets and increase epithelial catabolism of histamine. PLoS One 8, e80612
Diets high in heat-treated soybean meal reduce the histamine-induced epithelial response in the colon of weaned piglets and increase epithelial catabolism of histamine.Crossref | GoogleScholarGoogle Scholar | 24260435PubMed |

Le Gall M, Serena A, Jorgensen H, Theil PK, Bach Knudsen KE (2009) The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut – a model experiment with pigs. British Journal of Nutrition 102, 1590–1600.
The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut – a model experiment with pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WhurrM&md5=a0fd7faf394ae473ed579910a3daebb3CAS | 19635175PubMed |

Levine UY, Looft T, Allen HK, Stanton TB (2013) Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Applied and Environmental Microbiology 79, 3879–3881.
Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKgtbk%3D&md5=b77934fe519bd76091e05eb98cdd937fCAS | 23584773PubMed |

Loh G, Eberhard M, Brunner RM, Hennig U, Kuhla S, Kleessen B, Metges CC (2006) Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. The Journal of Nutrition 136, 1198–1202.

Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ (2012) Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Applied and Environmental Microbiology 78, 420–428.
Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOrsA%3D%3D&md5=0b55d66fcda9d38e4063940683e8dc53CAS | 22101049PubMed |

Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. Journal of Bacteriology 186, 2099–2106.
Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVylsL0%3D&md5=b7fe8547cd80cdecd778f39e1bd6addbCAS | 15028695PubMed |

Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environmental Microbiology 12, 304–314.
Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVGrtro%3D&md5=aef26a9ff10f2ed1b53b0ff5cd2147e3CAS | 19807780PubMed |

Lynch MB, Sweeney I, Callan IJ, O’Doherty JV (2007) Effects of increasing the intake of dietary beta-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs. Animal 1, 812–819.
Effects of increasing the intake of dietary beta-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKgs7jE&md5=ac7e15ecafe839f0f68d82b989f8a61cCAS | 22444744PubMed |

Macfarlane GT, Englyst HN (1986) Starch utilization by the human large intestinal microflora. The Journal of Applied Bacteriology 60, 195–201.
Starch utilization by the human large intestinal microflora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVCjtbg%3D&md5=34592b0e24bd620db5d26082f5cec609CAS | 2423494PubMed |

Metzler-Zebeli BU, Zebeli Q (2013) Cereal beta-glucan alters nutrient digestibility and microbial activity in the intestinal tract of pigs, and lower manure ammonia emission: a meta-analysis. Journal of Animal Science 91, 3188–3199.
Cereal beta-glucan alters nutrient digestibility and microbial activity in the intestinal tract of pigs, and lower manure ammonia emission: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsLjL&md5=53d347e6f4cf6eda8cde8d096c0bc95cCAS | 23572264PubMed |

Metzler-Zebeli BU, Hooda S, Pieper R, Zijlstra RT, van Kessel AG, Mosenthin R, Ganzle MG (2010) Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Applied and Environmental Microbiology 76, 3692–3701.
Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Cnsrw%3D&md5=11b90af2a388422b6cd8eb499d5b8d97CAS | 20382813PubMed |

Metzler-Zebeli BU, Gänzle MG, Mosenthin R, Zijlstra RT (2012) Oat beta-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs. The Journal of Nutrition 142, 668–674.
Oat beta-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFals7g%3D&md5=84205d80a214804accceb43561821126CAS | 22357741PubMed |

Mohnen D (2008) Pectin structure and biosynthesis. Current Opinion in Plant Biology 11, 266–277.
Pectin structure and biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVGmu78%3D&md5=3cd7aa8a7d12cbc271d8a2b4ea9028f9CAS | 18486536PubMed |

Molist F, van Oostrum M, Perez JF, Mateos GG, Nyachoti CM, van der Aar PJ (2014) Relevance of functional properties of dietary fibre in diets for weanling pigs. Animal Feed Science and Technology 189, 1–10.
Relevance of functional properties of dietary fibre in diets for weanling pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOqsbs%3D&md5=b3379b02a691aab0f7ccebd565d33f73CAS |

Nielsen TS, Laerke HN, Theil PK, Sorensen JF, Saarinen M, Forssten S, Bach Knudsen KE (2014) Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. British Journal of Nutrition 112, 1837–1849.
Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVCgsrrM&md5=89e942afc5c5d4ea7906709821c3ea02CAS | 25327182PubMed |

Nyachoti CM, Omogbenigun FO, Rademacher M, Blank G (2006) Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. Journal of Animal Science 84, 125–134.

Opapeju FO, Krause DO, Payne RL, Rademacher M, Nyachoti CM (2009) Effect of dietary protein level on growth performance, indicators of enteric health, and gastrointestinal microbial ecology of weaned pigs induced with postweaning colibacillosis. Journal of Animal Science 87, 2635–2643.
Effect of dietary protein level on growth performance, indicators of enteric health, and gastrointestinal microbial ecology of weaned pigs induced with postweaning colibacillosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2gt7c%3D&md5=7c3710c6afb0496bb0ba5d2b17e89ce7CAS | 19395520PubMed |

Paßlack N, Al-samman M, Vahjen W, Männer K, Zentek J (2012) Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a short-term dietary application. Livestock Science 149, 128–136.
Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a short-term dietary application.Crossref | GoogleScholarGoogle Scholar |

Patterson JK, Rutzke MA, Fubini SL, Glahn RP, Welch RM, Lei XG, Miller DD (2009) Dietary inulin supplementation does not promote colonic iron absorption in a porcine model. Journal of Agricultural and Food Chemistry 57, 5250–5256.
Dietary inulin supplementation does not promote colonic iron absorption in a porcine model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFamur4%3D&md5=abf4b3398e3e8ce8430a4da84a2b4a28CAS | 19480386PubMed |

Patterson JK, Yasuda K, Welch RM, Miller DD, Lei XG (2010) Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. The Journal of Nutrition 140, 2158–2161.
Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtLjI&md5=c276f1a4bc0fd0a19a9831d8118cd71dCAS | 20980641PubMed |

Pieper R, Janczyk P, Zeyner A, Smidt H, Guiard V, Souffrant WB (2008a) Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets. Microbial Ecology 56, 474–483.
Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets.Crossref | GoogleScholarGoogle Scholar | 18311472PubMed |

Pieper R, Jha R, Rossnagel B, Van Kessel AG, Souffrant WB, Leterme P (2008b) Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiology Ecology 66, 556–566.
Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyqu7nF&md5=6250d3f65df2e16d66e728c229fe79bcCAS | 19049653PubMed |

Pieper R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P (2009) Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of Salmonella enterica in an in vitro model of the porcine gastrointestinal tract. Applied and Environmental Microbiology 75, 7006–7016.
Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of Salmonella enterica in an in vitro model of the porcine gastrointestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSit73F&md5=46f9addeda23fca359a5c14ed48d4decCAS | 19783749PubMed |

Pieper R, Bindelle J, Malik G, Marshall J, Rossnagel BG, Leterme P, Van Kessel AG (2012a) Influence of different carbohydrate composition in barley varieties on Salmonella Typhimurium var. Copenhagen colonisation in a ‘Trojan’ challenge model in pigs. Archives of Animal Nutrition 66, 163–179.
Influence of different carbohydrate composition in barley varieties on Salmonella Typhimurium var. Copenhagen colonisation in a ‘Trojan’ challenge model in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1Wmtrk%3D&md5=7636f48305243556e1f6539427e2489eCAS | 22724164PubMed |

Pieper R, Kröger S, Richter JF, Wang J, Martin L, Bindelle J, Htoo JK, von Smolinski D, Vahjen W, Zentek J, Van Kessel AG (2012b) Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. The Journal of Nutrition 142, 661–667.
Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFals7s%3D&md5=ab0c3200f3e312a0bea12f3ed9f59ba9CAS | 22357743PubMed |

Pieper R, Boudry C, Bindelle J, Vahjen W, Zentek J (2014) Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Archives of Animal Nutrition 68, 263–280.
Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaksLbI&md5=92ba1525445204cb36ca164433573cacCAS | 24979393PubMed |

Pietrzak T, Schad A, Zentek J, Mosenthin R (2002) Biogene Amine in der Tierernährung, Stoffwechsel und physiologische Aspekte. Übersichten zur Tierernährung 31, 37–64.

Prohászka L, Baron F (1980) The predisposing role of high dietary-protein supplies in enteropathogenic Escherichia-coli infections of weaned pigs. Zentralblatt fur Veterinarmedizin. Reihe B. 27, 222–232.
The predisposing role of high dietary-protein supplies in enteropathogenic Escherichia-coli infections of weaned pigs.Crossref | GoogleScholarGoogle Scholar |

Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters 217, 133–139.
The microbiology of butyrate formation in the human colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlCqs7g%3D&md5=907d60e88a1b9b8f6f9bf5107911c1c0CAS | 12480096PubMed |

Regmi PR, Metzler-Zebeli BU, Gänzle MG, van Kempen TATG, Zijlstra RT (2011) Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs. The Journal of Nutrition 141, 1273–1280.
Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Kitb8%3D&md5=e68e29b50007f9d24caaecd855425228CAS | 21628635PubMed |

Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 8, 1323–1335.
Phylogenetic distribution of three pathways for propionate production within the human gut microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVyqt74%3D&md5=d9a76b107023688278d4d431078e414eCAS | 24553467PubMed |

Richter JF, Pieper R, Zakrzewski SS, Günzel D, Schulzke JD, Van Kessel AG (2014) Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon. British Journal of Nutrition 111, 1040–1049.
Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1yntbo%3D&md5=34bdb9951b9beb48b2834f99eb935e91CAS | 24229735PubMed |

Roberfroid MB, Delzenne NM (1998) Dietary fructans. Annual Review of Nutrition 18, 117–143.
Dietary fructans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVWgtrc%3D&md5=1b0cc70a51c861eb5b42120683957644CAS | 9706221PubMed |

Scott KP, Duncan SH, Louis P, Flint HJ (2011) Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. Biochemical Society Transactions 39, 1073–1078.
Nutritional influences on the gut microbiota and the consequences for gastrointestinal health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslKqtL4%3D&md5=0ecae20dd53bb589644d8d4e5b21f29cCAS | 21787350PubMed |

Seiler N, Raul F (2007) Polyamines and the intestinal tract. Critical Reviews in Clinical Laboratory Sciences 44, 365–411.
Polyamines and the intestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1antro%3D&md5=2e919e735a531f9b2ae1e3ad7553807fCAS | 17558654PubMed |

Souza da Silva C, Haenen D, Koopmans SJ, Hooiveld GJEJ, Bosch G, Bolhuis JE, Kemp B, Muller M, Gerrits WJJ (2014) Effects of resistant starch on behaviour, satiety-related hormones and metabolites in growing pigs. Animal 8, 1402–1411.
Effects of resistant starch on behaviour, satiety-related hormones and metabolites in growing pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOjsrnK&md5=3924f62f61cd91caaf3920c806548ce2CAS | 24845880PubMed |

Stumpff F, Lodemann U, Van Kessel AG, Pieper R, Klingspor S, Wolf K, Martens H, Zentek J, Aschenbach JR (2013) Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 183, 1053–1063.
Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVejtrbL&md5=730475dc4a63fc6810b5a58acb0db554CAS | 23812549PubMed |

Thomson LW, Pieper R, Marshall JK, Van Kessel AG (2012) Effect of wheat distillers grains with solubles or sugar beet pulp on prevalence of Salmonella enterica Typhimurium in weaned pigs. Journal of Animal Science 90, 13–15.
Effect of wheat distillers grains with solubles or sugar beet pulp on prevalence of Salmonella enterica Typhimurium in weaned pigs.Crossref | GoogleScholarGoogle Scholar | 23365269PubMed |

Vahjen W, Osswald T, Schäfer K, Simon O (2007) Comparison of a xylanase and a complex of non-starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Archives of Animal Nutrition 61, 90–102.
Comparison of a xylanase and a complex of non-starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1ais78%3D&md5=19d7c3d76de46823e6410aa8cc47b8c4CAS | 17451108PubMed |

Varel VH, Yen JT (1997) Microbial perspective on fiber utilization by swine. Journal of Animal Science 75, 2715–2722.

Verdonk JMAJ, Shim SB, van Leeuwen P, Verstegen MWA (2005) Application of inulin-type fructans in animal feed and pet food. British Journal of Nutrition 93, S125–S138.
Application of inulin-type fructans in animal feed and pet food.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2qsLw%3D&md5=48e163efd46c1acaeef5be254532cd75CAS |

Villodre Tudela C, Boudry C, Stumpff F, Aschenbach JR, Vahjen W, Zentek J, Pieper R (2015) Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling. British Journal of Nutrition 113, 610–617.
Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisl2lsLg%3D&md5=815b77c57892af411fcf9ba54e092b40CAS | 25656974PubMed |

Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA, Sogin ML, Morrison HG, Raffals L, Chang EB, Huffnagle GB, Schmidt TM, Cole JR, Tiedje JM (2013) A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1, 8
A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community.Crossref | GoogleScholarGoogle Scholar | 24451334PubMed |

Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal 5, 220–230.
Dominant and diet-responsive groups of bacteria within the human colonic microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGjtw%3D%3D&md5=536934ca956f9fd50eb7587679fce3e4CAS | 20686513PubMed |

Wellock IJ, Fortomaris PD, Houdijk JGM, Wiseman J, Kyriazakis I (2008) The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. British Journal of Nutrition 99, 520–530.
The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFektbs%3D&md5=56a602e8d11c8cc99f6693525638c08eCAS | 17761008PubMed |

Willing BP, Van Kessel AG (2010) Host pathways for recognition: establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livestock Science 133, 82–91.
Host pathways for recognition: establishing gastrointestinal microbiota as relevant in animal health and nutrition.Crossref | GoogleScholarGoogle Scholar |

Yasuda K, Maiorano R, Welch RM, Miller DD, Lei XG (2007) Cecum is the major degradation site of ingested inulin in young pigs. The Journal of Nutrition 137, 2399–2404.

Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal 6, 1535–1543.
Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOjtL3L&md5=2cf1dfc7c192415b00a97e6daa6f4010CAS | 22343308PubMed |