Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

The prediction of ham composition by bioelectrical impedance analysis

A. Mateos A , C. J. López-Bote B , I. Ovejero A , M. A. Latorre C D and A. Daza A
+ Author Affiliations
- Author Affiliations

A Departamento de Producción Animal, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain.

B Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain.

C Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Spain.

D Corresponding author. Email: malatorr@unizar.es

Animal Production Science 53(10) 1119-1125 https://doi.org/10.1071/AN12385
Submitted: 7 June 2012  Accepted: 18 December 2012   Published: 3 April 2013

Abstract

The objective of this preliminary experiment was to study whether bioelectrical impedance analysis (BIA) can accurately predict the components of fresh pig hams. The trimmed right hams from 20 Iberian barrows were used. Six measures of resistance and reactance were taken by a bioelectrical impedance analyser. Simple and multiple regression equations were calculated for estimating bone, lean, intermuscular fat (IF), subcutaneous fat (SF), total fat (TF) and skin weights and percentages with respect to ham weight (HW). The HW accounted for 22% (P < 0.05) and 35% (P < 0.01) in the variations in lean and skin percentages, respectively. The ham compactness index (HCI), calculated as HW (in g)/(ham length, in cm)2, accounted for 20% (P < 0.05) and 38% (P < 0.01) in the variations in SF and TF percentages, respectively. The HW and BIA variables accounted for 60% (P < 0.001) of the variation in skin percentage; the HCI and BIA measures accounted for 79% (P < 0.0001), 66% (P < 0.001) and 78% (P < 0.0001) of the variation in lean, IF and SF percentages; and BIA variables accounted for 72% (P < 0.0001) of the variation in bone percentage. To determine the accuracy of the calculated regression equations, five additional trimmed fresh hams from Iberian barrows were used. Actual and predicted values were compared. The HW accurately predicted lean weight and skin percentage in linear regression equations, and HCI adequately predicted SF and TF weights in simple linear regression equations, and also SF percentage in inverse function. The additional inclusion of HW, HCI or BIA variables in the regression models did not improve the accuracy of the equations. It is concluded that BIA might be applied to predict the components of fresh hams but more studies are needed to determine whether levels of accuracy and precision are sufficient for this method to be used in practice.


References

Andrés AI, Cava R, Mayoral I, Tejeda JF, Morcuende D, Ruíz F (2001) Oxidative stability and fatty acid composition of pig muscle as affected by rearing system, crossbreeding and metabolic type of fiber. Meat Science 59, 39–47.
Oxidative stability and fatty acid composition of pig muscle as affected by rearing system, crossbreeding and metabolic type of fiber.Crossref | GoogleScholarGoogle Scholar |

AOAC (2000) ‘Official methods of analysis.’ 17th edn. (Association of Official Analytical Chemists: Arlington, VA)

Berg EP, Marchello MJ (1994) Bioelectrical impedance analysis for the prediction of fat-free mass in lambs and lamb carcasses. Journal of Animal Science 72, 322–329.

Berg EP, Neary MK, Forrest DL, Thomas DL, Kauffman RG (1996) Assessment of lamb carcass composition from live animal measurement of bioelectrical impedance or ultrasonic tissue depths. Journal of Animal Science 74, 2672–2678.

BOE (2007) Ley 32/2007 de 7 de Noviembre para el cuidado de los animales, en su explotación, transporte, experimentación y sacrificio. Boletín Oficial del Estado 268, 45 914–45 920.

Branscheid W, Dobrowolski A, Sack E (1990) Simplification of the EC-reference method for the full dissection of pig carcasses. Fleischwirtsch 70, 565–567.

Daza A, Mateos A, Ovejero I, López-Bote CJ (2006a) Prediction of body composition of Iberian pigs by means bioelectrical impedance. Meat Science 72, 43–46.
Prediction of body composition of Iberian pigs by means bioelectrical impedance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVSltg%3D%3D&md5=2b8d3cdf6be1680917bd7aa2c989a185CAS |

Daza A, Mateos A, López Carrasco C, Rey A, Ovejero I, López-Bote CJ (2006b) Effect of feeding system on the growth and carcass characteristics of Iberian pigs, and the use of ultrasound to estimate yields of joints. Meat Science 72, 1–8.
Effect of feeding system on the growth and carcass characteristics of Iberian pigs, and the use of ultrasound to estimate yields of joints.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVSlsg%3D%3D&md5=cd82a00a8f1e58e5a7cc95aab995f87bCAS |

De Pedro E (1987) Estudio de los factores sexo y peso al sacrificio sobre las características de la canal del cerdo Ibérico. PhD Thesis, ETSIA, Universidad de Córdoba.

FEDNA (2010) ‘Normas FEDNA para la formulación de piensos compuestos.’ (Fundación Española para el Desarrollo de la Nutrición Animal: Madrid)

Mallows CL (1973) Some comment on Cp. Technometrics 15, 661–676.
Some comment on Cp.Crossref | GoogleScholarGoogle Scholar |

Marchello MJ, Slanger WD (1992) Use of bioelectrical impedance to predict leanness of Boston butts. Journal of Animal Science 70, 3443–3450.

Marchello MJ, Slanger WD (1994) Bioelectrical impedance can predict skeletal muscle and fat-free skeletal muscle of beef cows and their carcass. Journal of Animal Science 72, 3118–3123.

Marchello MJ, Slanger WD, Carlon JK (1999) Bioelectrical impedance: fat content of beef and pork from different size grinds. Journal of Animal Science 77, 2464–2468.

MARM (2011) ‘Anuario de Estadística Agraria.’ (Ministerio de Medio Ambiente, Medio Rural y Marino. Madrid, Spain. Available at www.marm.es [Verified 20 March 2013]

SAS (1999) ‘User’s guide.’ (SAS Institute Inc.: Cary, NC)

Swantek PM, Crenshaw JD, Marchello MJ, Lukaski HC (1992) Bioelectrical impedance: a non-destructive method to determine fat-free mass of live market swine and pork carcasses. Journal of Animal Science 70, 169–177.

Swantek PM, Marchello MJ, Tilton JE, Crenshaw JD (1999) Prediction of fat-free mass of pigs from 50 to 130 kilograms live weight. Journal of Animal Science 77, 893–897.

Velazco J, Morril JL, Grunewald KK (1999) Utilization of bioelectrical impedance to predict carcass composition of Holstein steers at 3, 6, 9, and 12 months of age. Journal of Animal Science 77, 131–136.

Ventanas S, Ventanas J, Tovar J, García C, Estévez M (2007) Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of dry-cured hams: effect of chemical composition oxidative status and sensory traits. Meat Science 77, 246–256.
Extensive feeding versus oleic acid and tocopherol enriched mixed diets for the production of dry-cured hams: effect of chemical composition oxidative status and sensory traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFKqtr0%3D&md5=6e813b64bad0f4b18bf6f2120cec6df8CAS |