Recent advances in the nutritional ecology of the Patagonian huemul: implications for recovery
Werner T. Flueck A B C and Jo Anne M. Smith-Flueck BA National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina; Swiss Tropical Institute, University of Basel; C.C. 592, 8400 Bariloche, Argentina.
B Institute of Natural Resources Analysis – Patagonia, Universidad Atlantida Argentina, C.C. 592, 8400 Bariloche, Argentina.
C Corresponding author. Email: wtf@deerlab.org
Animal Production Science 51(4) 311-326 https://doi.org/10.1071/AN10237
Submitted: 23 October 2010 Accepted: 2 December 2010 Published: 8 April 2011
Abstract
Huemul (Hippocamelus bisulcus) numbers had already declined drastically by the 1800s. Only ~500 animals remain along 1800 km of the Argentine Andes between 34 and 54°S, without cases of recolonisation or numerical responses. In Chile, at least two populations have increased; the remaining populations have either decreased or are assumed to be stable. During a Chilean–Argentine meeting in 1992 several factors were hypothesised to be important for huemul recovery (cattle, exotic trees, irrational forestry, exotic animals, illegal hunting, diseases, dogs, reduced numbers), but these can be rejected as key explanations for the general lack of recovery. Each factor may play an additive role – alone or in combination – in certain populations, but none of them are likely a primary cause. Our objective is to evaluate alternative factors and several indications warrant us to postulate that nutritional ecology instead plays a central role in the general absence of recovery. A wide range of antler quality is encountered among huemul today, with well developed specimens known primarily from historic times. If antler expression in huemul is homologous to other cervids, it follows that most extant populations are under suboptimal conditions. Another important clue is a high prevalence of age-independent osteopathy among adults. We hypothesised that such generalised secondary chronic alveolar osteomyelitis, osteoarthritis and periodontitis were hypothesised to relate to nutritional ecology. Meagre antler development with frequent asymmetry, high prevalence of osteopathy, and low recruitment rates could all be related to common and limiting nutritional factors known to cause the described phenomena. Initial investigations point to several lines of evidence that support the hypothesis that deficiency in iodine and selenium (Se) might be involved. Among other things, such deficiencies impair bone growth, reproduction, neonatal development, the immune and nervous systems, and cause periodontitis in ruminants. Se deficiency directly affects iodine metabolism. Only decades ago, overt iodine deficiency in humans living in these areas was very common. For free-ranging livestock, overt Se deficiency has been described in Chile: supported by geology, pedology, topography, and climatic patterns. It is well known that valley bottoms, flood plains, and habitats downwind from glacial areas provide higher provision of iodine and Se. The nexus to the nutritional ecology of huemul likely is the inaccessibility of most traditional winter ranges, elimination of migratory traditions, and concomitant elimination of source populations. Se and iodine provisions diminish with altitude, which at the same time increases physiological needs due to hypoxia, and intensified radiations and exercise. Most extant huemul populations occur in remote high-altitude refuges, or inaccessible Pacific coastal areas. Migration, an acquired behaviour, has been eliminated through past overhunting of this population segment; huemul being very vulnerable to human predation were killed by the thousands to feed people, dogs, chicken and pigs, and their skins were used for shelters. Huemul currently dispersing from refuges are generally being killed when entering former source areas now occupied by settlers and their dogs. Other ungulates driven into mountain refuges have been shown to be deficient in these trace minerals and responded well to mitigation of the deficiency. Thus, prevention of reaching traditional winter ranges or valley bottoms might result in inadequate mineral supply to huemul.
Additional keywords: behaviour, Hippocamelus bisulcus, migration, iodine, overhunting, selenium, trace minerals.
References
[1] Jiménez J, Guineo G, Corti P, et al. Hippocamelus bisulcus. Gland, Switzerland: IUCN; 2008. Available online at: http://www.iucnredlist.org/details/10054 [verified 9 February 2011][2] Secretaria de Ambiente and Desarrollo Sustentable. Principales factores negativos que atentan contra las posibilidades futuras de sobrevivencia y recuperación numérica del huemul. Presidencia de la Nación, Buenos Aires, Argentina. Available online at: http://www.ambiente.gov.ar/default.asp?idseccion=126 [verified 29 October 2010]
[3] Prichard HH. Through the heart of Patagonia. New York: D. Appleton and Co.; 1902.
[4] Flueck WT, Smith-Flueck JM. Huemul heresies: beliefs in search of supporting data. Part II. Biological and ecological considerations. Anim Prod Sci 2011; 51(4). [Short communication] http://www.publish.csiro.au/nid/72/issue/5591.htm
[5] Hatcher JB. Reports of the Princeton University expeditions to Patagonia, 1896–1899. Vol. I: Narrative of the Expeditions. Geography of Southern Patagonia. Stuttgart, Germany: E. Schweizerbart’sche Verlagshandlung; 1903.
[6] Smith-Flueck JM. The ecology of huemul (Hippocamelus bisulcus) in Andean Patagonia of Argentina and considerations about its conservation. Doctoral Dissertation, Univ. Nac. Comahue, Argentina; 2003.
[7] Putman R, Flueck WT. Intraspecific variation in biology and ecology of deer: magnitude and causation. Anim Prod Sci 2011; 51 277–91.
| Intraspecific variation in biology and ecology of deer: magnitude and causation.Crossref | GoogleScholarGoogle Scholar |
[8] Flueck WT. Exotic deer in southern Latin America: what do we know about impacts on native deer and on ecosystems? Biol Invasions 2010; 12 1909–22.
| Exotic deer in southern Latin America: what do we know about impacts on native deer and on ecosystems?Crossref | GoogleScholarGoogle Scholar |
[9] Krieg H. Als Zoologe in Steppen und Waeldern Patagoniens. München, Germany: J. F. Lehmanns Verlag; 1940.
[10] Flueck WT, Smith-Flueck JM. Red deer introduced to Patagonia: 1. Diseases and implications for native ungulates. Anim Prod Sci 2011; 51(4). [Short communication] http://www.publish.csiro.au/nid/72/issue/5591.htm
[11] Flueck WT, Smith-Flueck JM. Why the Patagonian huemul deer in Argentina fails to recover: an ecological hypothesis. In: Bartos L, Dusek A, Kotrba R, Bartosova J, editors. Advances in deer biology: deer in a changing world. Praha, Czech Republic: Research Institute of Animal Production; 2006. pp. 181–5.
[12] Flueck WT, Smith-Flueck JM. Age-independent osteopathology in skeletons of a South American cervid, the Patagonian huemul (Hippocamelus bisulcus). J Wildl Dis 2008; 44 636–48.
| 18689649PubMed |
[13] Carter DL, Robbins CW, Brown MJ. Selenium concentrations in forage on some high Northwestern Ranges. J Range Manage 1970; 23 234–8.
| Selenium concentrations in forage on some high Northwestern Ranges.Crossref | GoogleScholarGoogle Scholar |
[14] Fernandez-Martýnez A, Charlet L. Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 2009; 8 81–110.
| Selenium environmental cycling and bioavailability: a structural chemist point of view.Crossref | GoogleScholarGoogle Scholar |
[15] Nakamaru Y, Tagami K, Uchida S. Distribution coefficient of selenium in Japanese agricultural soils. Chemosphere 2005; 58 1347–54.
| Distribution coefficient of selenium in Japanese agricultural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Wgtg%3D%3D&md5=dad213f169a88c9361d51538ff9b1142CAS | 15686752PubMed |
[16] Mosher BW, Duce RA. Vapor phase and particulate selenium in the marine atmosphere. J Geophys Res 1983; 88 6761–8.
| Vapor phase and particulate selenium in the marine atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsVels74%3D&md5=bee00c5040267228d43dede43fd32896CAS |
[17] Lag J, Steinnes E. Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma 1978; 20 3–14.
| Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFWht7s%3D&md5=18a67bcde395cdfd0bc618f23f20e77fCAS |
[18] Steinnes E, Rambaek JP, Hanssen JE. Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 1992; 25 735–52.
| Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmtlyru7k%3D&md5=d91239576bf54d3c3ecefc47afa79f05CAS |
[19] Haygarth MP, Harrison AF, Jones KC. Geographical and seasonal variation in deposition of selenium to vegetation. Environ Sci Technol 1993; 27 2878–84.
| Geographical and seasonal variation in deposition of selenium to vegetation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlaksb4%3D&md5=01b1598f20b0cf16aa146d10c2864731CAS |
[20] Ren JZ, Zhou ZY, Pan B, Chen W. Selenium distribution in four grassland classes of China. In: Comb GF, Spallholz JE, Levander OA, Oldfield JE, editors. Selenium in biology and medicine. New York: AVI Books: 1987. pp. 769–774.
[21] Wang Z, Gao Y. Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 2001; 16 1345–51.
| Biogeochemical cycling of selenium in Chinese environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslamt70%3D&md5=dcb143560ef18c06fcd56aaf365afd70CAS |
[22] Iyengar GV, Gopal-Ayengar AR. Human health and trace-elements including effects on high-altitude populations. Ambio 1988; 17 31–5.
[23] Fielder PC. Implications of selenium levels in Washington mountain goats, mule deer, and Rocky Mountain elk. Northwest Sci 1986; 60 15–20.
| 1:CAS:528:DyaL28Xit1eqt7k%3D&md5=2262cacf45cc13f92eafc28f8a3c0ff5CAS |
[24] Rail CD, Kidd DE. Selenium kidney/liver ratios in rock squirrel populations from grassland and pinyon-juniper ecosystems. Ecotoxicol Environ Saf 1982; 6 2–8.
| Selenium kidney/liver ratios in rock squirrel populations from grassland and pinyon-juniper ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhsF2rsbw%3D&md5=68ad4279399e4aa8dde706daffc3b35bCAS | 7067650PubMed |
[25] Agostoni A, Gerli GC, Beretta L, Palazzini G, Buso GP, Xusheng H, et al Erythrocyte antioxidant enzymes and selenium serum levels in an Andean population. Clin Chim Acta 1983; 133 153–8.
| Erythrocyte antioxidant enzymes and selenium serum levels in an Andean population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFemtrw%3D&md5=262a8f7602807d04e09688f97d6ce104CAS | 6627681PubMed |
[26] Geering HR, Cary EE, Jones LHP, Allaway WH. Solubility and redox criteria for the possible forms of selenium in soils. Soil Sci Soc Am J 1968; 32 35–40.
| Solubility and redox criteria for the possible forms of selenium in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXpslGrtQ%3D%3D&md5=b3f259a464cc35f888977309c80b0a46CAS |
[27] Mikkelsen RL, Page AL, Bingham FT. Factors affecting selenium accumulation by agricultural crops. Soil Sci Soc Am Special Publ 1989; 23 65–94.
| 1:CAS:528:DyaL1MXltleis7g%3D&md5=614d4a04aa6466a64ca6347700b10cd1CAS |
[28] Flueck WT, Smith-Flueck JM. Herbicides and forest biodiversity: an alternative perspective. Wildl Soc Bull 2006; 34 1472–8.
| Herbicides and forest biodiversity: an alternative perspective.Crossref | GoogleScholarGoogle Scholar |
[29] Flueck WT. Evolution of forest systems: the role of biogeochemical cycles in determining sustainable forestry practices. Ecology and Society 2009; 14: r4. http://www.ecologyandsociety.org/vol14/iss2/resp4/
[30] Butler GW, Peterson PJ. Availability of selenium in forage to ruminants. New Zealand Society of Animal Production 1963; 23 13–27.
[31] Peterson PJ, Spedding DJ. The excretion by sheep of 75-selenium incorporated into red clover (Trifolium pratense): the chemical nature of the excreted selenium and its uptake by three plant species. N Z J Agric Res 1963; 6 13–23.
| 1:CAS:528:DyaF3sXksFSnt78%3D&md5=73aa0090fdc8846ec8217bfc63b66574CAS |
[32] Olson OE, Cary EE, Allaway WH. Absorption of trimethylselenonium by plants. Agron J 1976; 68 805–9.
| Absorption of trimethylselenonium by plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvFWgu7g%3D&md5=95ca90d3feacf8d7ad4b9345ec8b86b7CAS |
[33] Whitehead DC. Nutrient elements in grasslands: soil-plant-animal relationships. Oxon, UK: CABI Publishing; 2000.
[34] Swaine DJ. Selenium: from magma to man. In: Hemphill DD, editor. Trace substances in environmental health – XII. Columbia, Missouri: University of Missouri Press; 1978. pp. 129–34.
[35] Frost DV. Why the level of selenium in the food chain appears to be decreasing. In: Combs GF, Spallholz JE, Levander OA, Oldfield JE, editors. Selenium in biology and medicine. New York: AVI Publishing Company; 1987. pp. 534–47.
[36] Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN. Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 2010; 12 839–49.
| Structure–function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFOjsb4%3D&md5=a2582080a0cf9a8d88674bdc1f70e9c3CAS | 19747065PubMed |
[37] Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol 2002; 22 3565–76.
| How selenium has altered our understanding of the genetic code.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWlsLc%3D&md5=bacc8f593e64aaed59d90cf6365cd49aCAS | 11997494PubMed |
[38] Arthur JR. The glutathione peroxidases. Cell Mol Life Sci 2000; 57 1825–35.
| The glutathione peroxidases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVyntbw%3D&md5=3674a0726a3e5d954a6adbf13ff2ed42CAS | 11215509PubMed |
[39] Allen ME, Ullrey DE. Relationships among nutrition and reproduction and relevance for wild animals. Zoo Biol 2004; 23 475–87.
| Relationships among nutrition and reproduction and relevance for wild animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCmsLk%3D&md5=a4fbae41054e92ab55c8422fa2bc3924CAS |
[40] Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, et al Kashin–Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 1998; 339 1112–20.
| Kashin–Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cvjt1Cmsw%3D%3D&md5=55cbe5cbfa4a3ee57df7e33fd2598b1fCAS | 9770558PubMed |
[41] Ren FL, Guo X, Zhang RJ, Wang SJ, et al Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. Osteoarthritis Cartilage 2007; 15 1171–7.
| Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srjvFCqug%3D%3D&md5=3d4dd568e2aa882af9f315b85ab076bfCAS | 17490897PubMed |
[42] Arthur JR, Beckett GJ, Mitchell JH. The interactions between selenium and iodine deficiencies in man and animals. Nutr Res Rev 1999; 12 55–73.
| The interactions between selenium and iodine deficiencies in man and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVKgsLs%3D&md5=64eebaa6c90cbec063864a581e57533dCAS | 19087446PubMed |
[43] Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol 2005; 184 455–65.
| Selenium and endocrine systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVGjsb8%3D&md5=896f446976a8ac0db6cba2f7bbc74bb9CAS | 15749805PubMed |
[44] Voudouri AE, Chadio SE, Menegatos JG, Zervas GP, Nicol F, Arthur JR. Selenoenzyme activities in selenium- and iodine-deficient sheep. Biol Trace Elem Res 2003; 94 213–24.
| Selenoenzyme activities in selenium- and iodine-deficient sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFylu74%3D&md5=2ec2cc05405f5ee8d336c95cb57e5c28CAS | 12972689PubMed |
[45] Pavlata L, Prasek J, Filipek J, Pechova A. Influence of parenteral administration of selenium and vitamin E during pregnancy on selected metabolic parameters and colostrum quality in dairy cows at parturition. Veterinary Medicine – Czech 2004; 49 149–55.
| 1:CAS:528:DC%2BD2cXlsl2gu74%3D&md5=3f84e08473935dddbea0e7f4a2ac0927CAS |
[46] Bakonyi T, Radak Z. High altitude and free radicals. Journal of Sports Science and Medicine 2004; 3 64–9.
[47] Fuge R, Johnson CC. The geochemistry of iodine – a review. Environ Geochem Health 1986; 8 31–54.
| The geochemistry of iodine – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1eku74%3D&md5=8eb72bd74b479baeaee4f51dbe5a3b41CAS |
[48] Reith JF. Iodine content of Dutch soils in connection with some geological and agricultural questions. Zeitschrift für Pflanzenernährung. Düngung und Bodenkunde 1933; 31A 215–24.
| Iodine content of Dutch soils in connection with some geological and agricultural questions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXmsVyntg%3D%3D&md5=fcbde9b79799f9c5142a5f52c2018110CAS |
[49] Underwood EJ, Suttle NF. The mineral nutrition of livestock. Oxon, UK: CABI Publishing; 1999.
[50] Johnson C, Fordyce F, Stewart A. What do YOU mean by iodine deficiency? A geochemical perspective. IDD Newsletter 2003; 19 29–31.
[51] Whitehead DC. The distribution and transformations of iodine in the environment. Environ Int 1984; 10 321–39.
| The distribution and transformations of iodine in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs12rt7k%3D&md5=92466144afb31516bcf4c9eb1037f1ccCAS |
[52] Hetzel BS. Iodine and neuropsychological development. J Nutr 2000; 130 493S–5S.
| 1:CAS:528:DC%2BD3cXhtVSlt7w%3D&md5=e0ba8537e96ac6f9570489b3ec1e0307CAS | 10721937PubMed |
[53] Hetzel BS. Iodine deficiency and fetal brain damage. N Engl J Med 1994; 331 1770–1.
| Iodine deficiency and fetal brain damage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FnsFCisQ%3D%3D&md5=22607e3dddd3c89d5ce088c7c95935adCAS | 7984200PubMed |
[54] Black MM. Micronutrient deficiencies and cognitive functioning. J Nutr 2003; 133 3927S–31S.
| 1:CAS:528:DC%2BD3sXptVGgsbg%3D&md5=2ba1abb421c43b0fc6890708f881b688CAS | 14672291PubMed |
[55] Choudhury N, Gorman KS. Subclinical prenatal iodine deficiency negatively affects infant development in Northern China. J Nutr 2003; 133 3162–5.
| 1:CAS:528:DC%2BD3sXotFKrt74%3D&md5=35c4fa87c1bb9d31e8d819d0fdd4d7dfCAS | 14519803PubMed |
[56] Potter BJ, Mano MT, Belling GB, McIntosh GH, et al Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep. Neuropathol Appl Neurobiol 1982; 8 303–13.
| Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvFOitbw%3D&md5=6787da15163d80d14711e1559fc52054CAS | 7133315PubMed |
[57] Matamoros R, Contreras PA, Wittwer F, Mayorga MI. Hypothyroidism in ruminants. Archivos Medicina Veterinaria 2003; 35 1–11.
| 1:CAS:528:DC%2BD2cXnvValsLs%3D&md5=3e2d688737863a5c3743764ec726c263CAS |
[58] Vadstrup S. Comparative aspects of iodine conservation in mammals. Comp Biochem Physiol 1993; 106A 15–7.
| Comparative aspects of iodine conservation in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVKgt7Y%3D&md5=e8a566b5a9d96dc7b7bbaf23f551e196CAS |
[59] Haller H. Der Rothirsch im Schweizerischen Nationalpark und dessen Umgebung. Eine alpine Population von Cervus elaphus zeitlich und räumlich dokumentiert. Nationalpark-Forschung Schweiz 2002; 91 1–144.
[60] Moser CA. The bighorn sheep of Colorado: a review of Colorado’s bighorn sheep studies. Technical Publication No. 10. Denver, CO): The Colorado Game and Fish Department; 1962.
[61] McNaughton SJ. Adaptation of herbivores to seasonal changes in nutrient supply. In: Hacker JB, Ternouth JH, editors. The nutrition of herbivores. New York: Academic Press; 1987. pp. 391–408.
[62] Jaramillo S, Villa NA, Pineda AF, Gallego AB, Tabares P, Ceballos A. Actividad sanguínea de superóxido dismutasa y glutatión peroxidasa en novillas a pastoreo. Pesquisa Agropecu Bras 2005; 40 1115–21.
| Actividad sanguínea de superóxido dismutasa y glutatión peroxidasa en novillas a pastoreo.Crossref | GoogleScholarGoogle Scholar |
[63] Poole KG, Bachmann KD, Teske IE. Mineral lick use by GPS radio-collared Mountain Goats in Southeastern British Columbia. West N Am Nat 2010; 70 208–17.
| Mineral lick use by GPS radio-collared Mountain Goats in Southeastern British Columbia.Crossref | GoogleScholarGoogle Scholar |
[64] Kalkus JW. A study of goitre and associated conditions in domestic animals. Washington Agricultural Experimental Station Bulletin 1920; 156 1–48.
[65] Brandborg SM. Life history and management of the mountain goat in Idaho. Wildlife Bulletin No. 2. Boise, Idaho: Department of Fish and Game, State of Idaho; 1955.
[66] Cowan IM, Brink VC. Natural game licks in the Rocky Mountain National Parks of Canada. J Mammal 1949; 30 379–87.
| Natural game licks in the Rocky Mountain National Parks of Canada.Crossref | GoogleScholarGoogle Scholar |
[67] Mills A, Milewski A. Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum. J Zool 2007; 271 110–8.
| Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum.Crossref | GoogleScholarGoogle Scholar |
[68] Atwood TC, Weeks HP. Sex-specific patterns of mineral lick. Northeastern Naturalist 2003; 10 409–14.
[69] Calef GW, Lortie GM. A mineral lick of the Barren-Ground caribou. J Mammal 1975; 56 240–2.
| A mineral lick of the Barren-Ground caribou.Crossref | GoogleScholarGoogle Scholar |
[70] Hebert D, Cowan IM. Natural salt licks as a part of the ecology of the mountain goat. Can J Zool 1971; 49 605–10.
| Natural salt licks as a part of the ecology of the mountain goat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M3ltFWksg%3D%3D&md5=fdc6580c3829f61bf9e810e9669ad99fCAS | 5557898PubMed |
[71] Ayotte JB, Parker KL, Arocena JM, Gillingham MP. Chemical composition of lick soils: functions of soil ingestion by four ungulate species. J Mammal 2006; 87 878–88.
| Chemical composition of lick soils: functions of soil ingestion by four ungulate species.Crossref | GoogleScholarGoogle Scholar |
[72] Mincher BJ, Mionczynski J, Hnilicka PA, Ball RD, Houghton TX. Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis). Eur J Wildl Res 2008; 54 192–8.
| Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis).Crossref | GoogleScholarGoogle Scholar |
[73] Stephenson JD, Mills A, Eksteen JJ, Milewski AV, Myburgh JG. Geochemistry of mineral licks at Loskop Dam Nature Reserve, Mpumalanga, South Africa. Environ Geochem Health 2010;
| Geochemistry of mineral licks at Loskop Dam Nature Reserve, Mpumalanga, South Africa.Crossref | GoogleScholarGoogle Scholar | 20473705PubMed |
[74] Dalke PD, Beeman RD, Kindel FJ, Robel RJ, Williams TR. Use of salt by elk in Idaho. J Wildl Manage 1965; 29 319–32.
| Use of salt by elk in Idaho.Crossref | GoogleScholarGoogle Scholar |
[75] Butland GJ. The human geography of southern Chile. The Institute of British Geographers Publication. London: George Philip & Son; 1957.
[76] CADE-IDEPE. Diagnostico y clasificacion de los cursos y cuerpos de agua segun objetivos de calidad cuenca del rio Bueno. Santiago, Chile: Direccion General de Aguas; 2004.
[77] Bertrand S, Fagel N. Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S). Catena 2008; 73 10–22.
| Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S).Crossref | GoogleScholarGoogle Scholar |
[78] Nichols RL, Miller MM. Glacial geology of Ameghino Valley, Lago Argentino, Patagonia. Geogr Rev 1951; 41 274–94.
| Glacial geology of Ameghino Valley, Lago Argentino, Patagonia.Crossref | GoogleScholarGoogle Scholar |
[79] Colmet Daage F, Lanclotti ML, Marcolin AA. Importancia forestal de los suelos volcanicos de la patagonia norte y central. Bariloche, Argentina: INTA-EEA; 1995.
[80] Rolando AP, Hartmann LA, Santos JO, Fernandez RR, Etcheverry RO, Schalamuk IA, et al SHRIMP U-Pb zircon dates from igneous rocks from the Fontana Lake region, Patagonia: implications for the age of magmatism, Mesozoic geological evolution and age of basement. Rev Asoc Geol Argent 2004; 59 671–84.
[81] Neall VE. Volcanic soils. In: Verheye WH, editor. Land use, land cover and soil sciences. Encyclopedia of Life Support Systems. Oxford, UK: EOLSS Publishers; 2009. Available online at: http://www.eolss.net [verified 29 November 2010]
[82] Duce RA, Zoller WH, Moyers JL. Particulate and gaseous halogens in Antarctic atmosphere. J Geophys Res 1973; 78 7802–11.
| Particulate and gaseous halogens in Antarctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXivFegug%3D%3D&md5=98e888b16d281f323b7e3206defba4a2CAS |
[83] Contreras PA, Wittwer F, Matamoros R, Mayorga IM, van Schaik G. Effect of grazing pasture with a low selenium content on the concentrations of triiodothyronine and thyroxine in serum, and GSH-Px activity in erythrocytes in cows in Chile. N Z Vet J 2004; 53 77–80.
[84] Wittwer F, Araneda P, Ceballos A, Contreras PA, Andaur M, Bohmwald H. Glutathion peroxidase activity (GSH-Px) in grazing dairy cattle in the south of Chile (IXth region) and their relation with selenium contents in the forage. Archivos de Medicina Veterinaria 2002; 34 49–57.
| 1:CAS:528:DC%2BD2cXnvVals7c%3D&md5=263cf7210ce59b6bd45f7e1ba54ddb41CAS |
[85] Contreras PA, Paredes E, Wittwer F, Carrillo S. Clinical case: outbreak of White Muscle Disease or Nutritional Muscular Dystrophy in calves. Revista Científica. FCV-LUZ 2005; 15 401–5.
[86] Quintana HC, Bravo CG, Retell EA. Contenido de yodo en leche de vacunoprocedente de la Sierra y Costa del Peru. Arch Latinoam Nutr 2003; 53 408–12.
| 1:CAS:528:DC%2BD2cXjslyrurw%3D&md5=2ff1e961530050fce13c3e8e6fbd4846CAS | 15125084PubMed |
[87] Yoshida S, Muramatsu Y, Uchida S. Studies on the sorption of I- (iodide) and IO3- (iodate) onto Andosols. Water Air Soil Pollut 1992; 63 321–9.
| Studies on the sorption of I- (iodide) and IO3- (iodate) onto Andosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvV2nsbc%3D&md5=578b2dc07571f66c2a63a2751c12f168CAS |
[88] Contreras PA, Ceballos A, Matamoros R, Wittwer F. Iodine concentration in forages from dairy farms in the IXth and Xth regions of Chile. Archivos de Medicina Veterinaria 2003; 35 75–9.
| 1:CAS:528:DC%2BD2cXnvValsLY%3D&md5=ac15f4239e77ee09469ecf89ff0091b2CAS |
[89] Muzzo S, Ramirez I, Carvajal F, Biolley E, Leiva L. Iodine nutrition in school children of four areas of Chile during the year 2001. Rev Med Chil 2003; 131 1391–8.
| 15022401PubMed |
[90] Golluscio RA, Giraudo C, Borrelli P, Montes L, et al. Utilización de los Recursos Naturales en la Patagonia. In: Consorcio DHV, Consultants-Swedforest, editors. Desertificación en la Patagonia. Buenos Aires, Argentina: SAGPyA; 1999. pp. 1–82.
[91] Kelly FC, Snedden WW. Prevalence and geographical distribution of endemic goitre. In: Endemic goitre. Monograph Series 44. Geneva: World Health Organization; 1960. pp. 27–233.
[92] Pretell EA, Niepomniszcze H. Iodine deficiency persists in northern Argentina. IDD Newsletter 2009; 31 8–9.
[93] Díaz NI, Smith-Flueck J. The Patagonian huemul. A mysterious deer on the brink of extinction. Buenos Aires: Literature of Latin America; 2000.
[94] Chapman DI. Antlers – bones of contention. Mammal Rev 1975; 5 121–72.
| Antlers – bones of contention.Crossref | GoogleScholarGoogle Scholar |
[95] Lehoczki R, Erdélyi K, Sonkoly K, Szemethy L, Csányi S. Iodine distribution in the environment as a limiting factor for roe deer antler development. Biol Trace Elem Res 2011; 139 168–76.
| Iodine distribution in the environment as a limiting factor for roe deer antler development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVCjuw%3D%3D&md5=1237e130b90ba90a56a009c87ea4aa27CAS | 20195916PubMed |
[96] Smith-Flueck JM, Flueck WT. Natural mortality patterns in a population of southern Argentina huemul (Hippocamelus bisulcus), an endangered Andean cervid. Eur J Wildl Res 2001; 47 178–88.
[97] Claraz MG. Sur l’Equus bisulcus, de Molina. Revue et Magasin de Zoologie Pure et Apliquee 1864; 241–8.
[98] Sclater PL. On Cervus chilensis. Proc Zool Soc Lond 1875; 2 44–7.
[99] Housse PR. Animales salvajes de Chile en su clasificación moderna: su vida y sus costumbres. Santiago, Chile: Ediciones de la Universidad de Chile; 1953.
[100] Steffen H. The Patagonian cordillera and its main rivers, between 41 degrees and 48 degrees south latitude (continued). Geogr J 1900; 16 185–209.
| The Patagonian cordillera and its main rivers, between 41 degrees and 48 degrees south latitude (continued).Crossref | GoogleScholarGoogle Scholar |
[101] Wolffsohn JW. Notas sobre el huemul. Rev Chil Hist Nat 1910; 14 227–34.
[102] Burmeister CV. Nuevos datos sobre el territorio Patagonico de Santa Cruz. Revista del Museo de la Plata 1893; 4: 227–56 and 338–52.
[103] Kolliker Frers A. Das Waidwerk und die autochthonen Cerviden in Argentinien. In: Vogel CA, editor. Parque Diana. München, Germany: Stefan Schwarz Verlag; 1969. pp. 25–31.
[104] Cabrera A, Yepes J. Mamíferos sudamericanos. Buenos Aires: Ediar, Comp. Argentina de Editores; 1940.
[105] Serret A. El Huemul: Fantasma de la Patagonia. Ushuaia, Argentina: Zagier & Urruty Publications; 2001.
[106] Giai AG. Huemul, inofensivo venado de las soledades cordilleranas de la Patagonia. La Chacra (Arg.) 1936; 6 99–101.
[107] Gigoux EE. El huemul. Rev Chil Hist Nat 1929; 23 573–82.
[108] Aldridge DK. Proyecto conservación del huemul (Hippocamelus bisulcus) en Chile. Medio Ambiente 1988; 9 109–16.
[109] Gruell GE, Papez NJ. Movements of mule deer in northeastern Nevada. J Wildl Manage 1963; 27 414–27.
| Movements of mule deer in northeastern Nevada.Crossref | GoogleScholarGoogle Scholar |
[110] Sawyer H, Lindzey F. Mule deer and pronghorn migration in western Wyoming. Wildl Soc Bull 2005; 33 1266–73.
| Mule deer and pronghorn migration in western Wyoming.Crossref | GoogleScholarGoogle Scholar |
[111] Philippi RA. El guemul de Chile. Anales del Museo Nacional de Chile 1892; 1 1–9.
[112] Moreno FP. Explorations in Patagonia. Geogr J 1899; 14 241–69.
| Explorations in Patagonia.Crossref | GoogleScholarGoogle Scholar |
[113] Cruz I, Munoz AS, Caracotche M. A huemul (Hippocamelus bisulcus) antler artefact in archaeological deposits of the Atlantic coast. Implications for human mobility and species distribution. Magallania 2010; 38 287–94.
[114] Burmeister H. The huemul. Nature 1873; 9 82
[115] Osgood WH. The Marshall Chilean Field Expedition 1922–1923. Field notes 1923. Available online at: http://fm1.fieldmuseum.org/aa/staff_page.cgi?staff=patterso [verified 26 November 2010]
[116] Musters RN. A year in Patagonia. J Royal Geogr Soc London 1871; 41 59–77.
[117] Behm E. Reise im südwestlichen Patagonien von J.T. Rogers und E. Ibar, 1877, nebst den Tagebüchern von A. de Viedma 1782 und J.H. Gardiner 1867. Petermanns Geogr Mitt 1880; 26 47–64.
[118] Martin C. Dr Hans Steffens Reise im südlichen Patagonien. Petermanns Geogr Mitt 1899; 45 124–5.
[119] Miller S, Rottman J, Taber RD. Dwindling and endangered ungulates of Chile: vicugna, lama, Hippocamelus, and Pudu. Transactions of North American Wildlife and Natural Resource Conference 1973; 38: 55–67.
[120] Prichard HH. Hunting camps in wood and wilderness. London: William Heinemann; 1910.
[121] Iglesias RE. El huemul. La Montaña (Arg.) 1965; 7: 26–8.
[122] Madsen A. Patagonia Vieja. Buenos Aires: Zagier & Urruty; 1948.
[123] Administracion de Parques Nacionales. Guia del parque Nacional del Sur. Buenos Aires, Argentina: Administracion General de Parques Nacionales; 1952.
[124] Smith JR. The economic geography of Chile. Bull Am Geogr Soc 1904; 36 1–21.
| The economic geography of Chile.Crossref | GoogleScholarGoogle Scholar |
[125] Willis B. El norte de la Patagonia. Buenos Aires: Ministerio de Obras Publicas; 1914.
[126] Rothkugel M. Los bosques Patagonicos. Buenos Aires: Ministerio de Agricultura; 1916.
[127] Gill R, Saucedo C, Aldridge D, Morgan G. Ranging behavior of huemul in relation to habitat and landscape. J Zool 2008; 274 254–60.
| Ranging behavior of huemul in relation to habitat and landscape.Crossref | GoogleScholarGoogle Scholar |
[128] Armesto JJ, Manuschevich D, Mora A, Smith-Ramireza C, Rozzi R, Abarzúa AM, et al From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15 000 years. Land Use Policy 2010; 27 148–60.
| From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15 000 years.Crossref | GoogleScholarGoogle Scholar |
[129] Milewski AV, Diamond RE. Why are very large herbivores absent from Australia? A new theory of micronutrients. J Biogeogr 2000; 27 957–78.
| Why are very large herbivores absent from Australia? A new theory of micronutrients.Crossref | GoogleScholarGoogle Scholar |
[130] Flueck WT, Smith-Flueck JM. Selenium deficiency in deer: the effect of a declining selenium cycle? Transactions of Congress of International Union of Game Biologists 1990; 19: 292–301.
[131] Flueck WT. Effect of trace elements on population dynamics: selenium deficiency in free-ranging black-tailed deer. Ecology 1994; 75 807–12.
| Effect of trace elements on population dynamics: selenium deficiency in free-ranging black-tailed deer.Crossref | GoogleScholarGoogle Scholar |
[132] McIntosh PD, Ogle GI, Patterson RG, Aubrey B, Morriss J, Giddens K. Changes of surface soil nutrients and sustainability of pastoralism on grazed hilly and steep land, South Island, New Zealand. J Range Manage 1996; 49 361–7.
| Changes of surface soil nutrients and sustainability of pastoralism on grazed hilly and steep land, South Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |
[133] Jarvis PJ, Boswell CC, Metherell AK, Davison RM, Murphy JA. A nutrient budget for the Meat and Wool Economic Service of a New Zealand Class 1 high-country farm model. N Z J Agric Res 2002; 45 1–15.
| A nutrient budget for the Meat and Wool Economic Service of a New Zealand Class 1 high-country farm model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktF2mu74%3D&md5=9ac685bcde9271bad118d183eafa0973CAS |
[134] Floate M. Review of South Island high country land management issues. N Z J Ecol 1994; 18 69–81.
[135] Caughley G. Directions in conservation biology. J Anim Ecol 1994; 63 215–44.
| Directions in conservation biology.Crossref | GoogleScholarGoogle Scholar |
[136] Reed DF. Conflicts with civilization. In: Wallmo OC, editor. Mule and black-tailed deer of North America. Lincoln, Nebraska: University of Nebraska Press; 1981. pp. 509–35.
[137] Matter WJ, Mannan RW. How do prey persist? J Wildl Manage 2005; 69 1315–20.
| How do prey persist?Crossref | GoogleScholarGoogle Scholar |
[138] Flueck WT, Smith-Flueck JM. Huemul heresies: beliefs in search of supporting data. Part II. Biological and ecological considerations. Anim Prod Sci 2011; 51(4). [Short communication] http://www.publish.csiro.au/nid/72/issue/5591.htm
[139] Flueck WT, Smith-Flueck JM. Predicaments of endangered huemul deer, Hippocamelus bisulcus, in Argentina: a review. Eur J Wildl Res 2006; 52 69–80.
| Predicaments of endangered huemul deer, Hippocamelus bisulcus, in Argentina: a review.Crossref | GoogleScholarGoogle Scholar |
[140] Conroy MJ, Beier P, Quigley H, Vaughan MR. Improving the use of science in conservation: lessons from the Florida Panther. J Wildl Manage 2006; 70 1–7.
| Improving the use of science in conservation: lessons from the Florida Panther.Crossref | GoogleScholarGoogle Scholar |
[141] Beier P, Vaughan MR, Conroy MJ, Quigley H. Evaluating scientific inferences about the Florida Panther. J Wildl Manage 2006; 70 236–45.
| Evaluating scientific inferences about the Florida Panther.Crossref | GoogleScholarGoogle Scholar |
[142] Bokdam J, Wallis de Vries MF. Forage quality as a limiting factor for cattle grazing in isolated Dutch nature reserves. Conserv Biol 1992; 6 399–408.
| Forage quality as a limiting factor for cattle grazing in isolated Dutch nature reserves.Crossref | GoogleScholarGoogle Scholar |
[143] Imai H, Kashiwazaki H, Suzuki T, Kabuto M, et al Selenium levels and glutathione-peroxidase activities in blood in an Andean high-altitude population. J Nutr Sci Vitaminol (Tokyo) 1995; 41 349–61.
| 1:CAS:528:DyaK2MXms1Kit7g%3D&md5=d2b20ac6d90e033dba89d0a5069a0593CAS | 7472679PubMed |
[144] Sargison ND, West MD, Clark RG. The effect of iodine deficiency on ewe fertility and perinatal lamb mortality. N Z Vet J 1998; 46 72–5.
| 1:CAS:528:DyaK1cXjslemtbg%3D&md5=1e0dc875c52aaa7ed755b4491a5ab0b6CAS | 16032020PubMed |
[145] Robbins CT. Wildlife feeding and nutrition. New York: Academic Press; 1993.
[146] Rivera MT, De Souza AP, Hasslocher A, Moreno M, et al Progressive Chagas cardiomyopathy is associated with low selenium levels. Am J Trop Med Hyg 2002; 66 706–12.
| 12224578PubMed |
[147] Gomez RM, Solana ME, Levander OA. Host selenium deficiency increases the severity of chronic inflammatory myopathy in Trypanosoma cruzi-inoculated mice. J Parasitol 2002; 88 541–7.
| 12099423PubMed |
[148] Hamende V. Rocky Mountain low: Bighorn sheep. AG News (Univ. Wyoming) 2005; 14 12–5.
[149] Hnilicka PA, Mioncynski J, Mincher BJ, States J, Hinschberger M, Oberlie S, et al Bighorn sheep lamb survival, trace minerals, rainfall and air pollution: are there any connections? Proceedings of the Biennial Symposium Northern Wild Sheep and Goat Council 2003; 13 69–94.
[150] Milewski A. Why moa, not mammal? Australasian Science 2004; 25 14–6.
[151] Lyman RL. Paleozoology in the service of conservation biology. Evol Anthropol 2006; 15 11–9.
| Paleozoology in the service of conservation biology.Crossref | GoogleScholarGoogle Scholar |
[152] Andersen R. Habitat deterioration and the migratory behavior of moose (Alces alces L.) in Norway. J Appl Ecol 1991; 28 102–8.
| Habitat deterioration and the migratory behavior of moose (Alces alces L.) in Norway.Crossref | GoogleScholarGoogle Scholar |
[153] Ryan SJ. The role of culture in conservation planning for small or endangered populations. Conserv Biol 2006; 20 1321–4.
| The role of culture in conservation planning for small or endangered populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vpslymsA%3D%3D&md5=690283ee842fe685d2f3feaeeb34bbf7CAS | 16922250PubMed |
[154] Murillo J, Ramb AM. Der Kampf der Andenhirsche. Stuttgart, Germany: K. Thienemann Verlag; 1975.
[155] Honess RF, Frost NM. A Wyoming bighorn sheep study. Wyoming Game and Fish Department Bulletin 1942; 1 1–127.
[156] Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG. Evaluating approaches to the conservation of rare and endangered plants. Ecology 1994; 75 584–606.
| Evaluating approaches to the conservation of rare and endangered plants.Crossref | GoogleScholarGoogle Scholar |
[157] Smith-Flueck JM, Diaz NI, Flueck WT. Cría de huemules en cautiverio: las perspectivas actuales considerando las experiencias históricas. In: Iriarte A, Tala C, Gonzalez B, Zapata B, Gonzalez G, Maino M, editors. Cría en cautividad de fauna Chilena. Santiago, Chile: Servicio Agrícola y Ganadero – Parque Metropolitano, Zoológico Nacional – Universidad de Chile; 2004. pp. 457–70.
[158] Smith-Flueck JM, Flueck WT. Una visión conceptual sobre la conservación del huemul en Argentina. In: M Cosse, D Paz Barreto, S Gonzalez, editors. Actas del Taller: Hacia un Plan Nacional de Conservación y Recuperación del Huemul en Argentina. Montevideo, Uruguay: IUCN/SSC Deer Specialist Group; 2002. [CD-ROM]
[159] Villa AR, López R, Pastore H, Faúndez R, Serret A. Current distribution and conservation of the huemul (Hippocamelus bisulcus) in Argentina and Chile. Mastozool Neotrop 2006; 13 263–9.