Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Increasing wheat yields in a high rainfall area of Western Australia

WK Anderson and WR Smith

Australian Journal of Experimental Agriculture 30(5) 607 - 614
Published: 1990

Abstract

Average commercial wheat yields in the southern, high rainfall area of Western Australia have seldom exceeded 1.5 t/ha and wheat is not widely grown. However, the average annual rainfall and length of growing season (>400 mm and >6 months) are conducive to much larger yields. Thirteen factorial experiments with mid and long season cultivars (Aroona and Osprey), 2 levels of applied nitrogen (N) (40 and 80 kg N/ha), 2 seed rates (50 and 100 kg/ha) and with or without fungicide were conducted at 8 sites over 2 seasons. The experiment was done to investigate combinations of cultivar and agronomic practices suitable for increased wheat production in long season environments in Western Australia. Largest grain yields (>4 t/ha) were obtained where wheat followed a grass-free break crop, and the mid season cultivar was used with 80 kg N/ha and 100 kg/ha of seed. Increases due to cultivar and seed rate were more consistent than those due to N, and increases from application of fungicide were less consistent. It is suggested that the optimal wheat production 'package' will include sowing in May in rotation with a grass-free break crop, seed rate of about 100 kg/ha and, when all other factors are optimal, N rates of over 40 kg/ha. The greatest yield increases were associated with the sites where wheat followed a grass-free crop. Increases due to other factors were relatively smaller. Hectolitre weight and percentage of small grain (<2 mm) often reached levels that would have entailed downgrading in commercial deliveries. However, in the most productive crops where root and leaf diseases were minimal, these quality parameters were seldom deficient and grain protein contents exceeded 10% at yields of up to 4 t/ha.

https://doi.org/10.1071/EA9900607

© CSIRO 1990

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions