Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

The changing status of invertebrate pests and the future of pest management in the Australian grains industry

Ary A. Hoffmann A D , Andrew R. Weeks B , Michael A. Nash A , G. Peter Mangano C and Paul A. Umina A
+ Author Affiliations
- Author Affiliations

A Centre for Environmental Stress and Adaptation Research (CESAR), Bio21 Molecular Science Institute, Department of Zoology, The University of Melbourne, Parkville, Vic. 3010, Australia.

B CESAR, Bio21 Molecular Science Institute, Department of Genetics, The University of Melbourne, Parkville, Vic. 3010, Australia.

C Western Australian Department of Agriculture and Food, South Perth, WA 6151, Australia.

D Corresponding author. Email: ary@unimelb.edu.au

Australian Journal of Experimental Agriculture 48(12) 1481-1493 https://doi.org/10.1071/EA08185
Submitted: 17 June 2008  Accepted: 22 August 2008   Published: 6 November 2008

Abstract

The Australian grains industry is dealing with a shifting complex of invertebrate pests due to evolving management practices and climate change as indicated by an assessment of pest reports over the last 20–30 years. A comparison of pest outbreak reports from the early 1980s to 2006–07 from south-eastern Australia highlights a decrease in the importance of pea weevils and armyworms, while the lucerne flea, Balaustium mites, blue oat mites and Bryobia mites have increased in prominence. In Western Australia, where detailed outbreak records are available from the mid 1990s, the relative incidence of armyworms, aphids and vegetable weevils has recently decreased, while the incidence of pasture cockchafers, Balaustium mites, blue oat mites, redlegged earth mites, the lucerne flea and snails has increased. These changes are the result of several possible drivers. Patterns of pesticide use, farm management responses and changing cropping patterns are likely to have contributed to these shifts. Drier conditions, exacerbated by climate change, have potentially reduced the build-up of migratory species from inland Australia and increased the adoption rate of minimum and no-tillage systems in order to retain soil moisture. The latter has been accompanied by increased pesticide use, accelerating selection pressures for resistance. Other control options will become available once there is an understanding of interactions between pests and beneficial species within a landscape context and a wider choice of ‘softer’ chemicals. Future climate change will directly and indirectly influence pest distributions and outbreaks as well as the potential effectiveness of endemic natural enemies. Genetically modified crops provide new options for control but also present challenges as new pest species are likely to emerge.


Acknowledgements

We are grateful to Peter Ridland for providing access to pest bulletins from the Victorian Department of Primary Industries, Garry McDonald for discussions and two anonymous reviewers for comments. Thanks to Paul Mitrovksi, Emily Thomson and Dusty Severtson for technical assistance. Our research on pest and beneficial species in broadacre agriculture is supported by the Grains Research and Development Corporation including the National Invertebrate Pest Initiative, while Ary A. Hoffmann is supported by a Federation Fellowship from the Australian Research Council.


References


ABARE (2007) ‘Australian commodities. September quarter 07.3.’ (The Australian Bureau of Agricultural and Resource Economics: Canberra)

Alassiuty AIM, Khalil MA (1995) The influence of insecticide pheromone substitution on the abundance and distributional pattern of soil oribatid mites. Experimental & Applied Acarology 19, 399–410.
Crossref | GoogleScholarGoogle Scholar | CAS | [Verified 5 October 2008]

De Sousa-Majer MJ, Hardie DC, Turner NC, Higgins TJV (2007) Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. Journal of Economic Entomology 100, 1416–1422.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dill G, CaJacob CA, Padgette S (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Management Science 64, 326–331.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Duffield SJ, Steer AP (2006) The ecology of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Riverina region of south-eastern Australia and the implications for tactical and strategic management. Bulletin of Entomological Research 96, 583–596.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Edwards OR, Franzmann B, Thackray D, Micic S (2008) Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review. Australian Journal of Experimental Agriculture 48, 1523–1530.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Elliott M (1989) The pyrethroids: early discovery, recent advances and the future. Pesticide Science 27, 337–351.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fitt GP, Dillon ML, Hamilton JG (1995) Spatial dynamics of Heliocoverpa populations in Australia – simulation modeling and empirical studies of adult movement. Computers and Electronics in Agriculture 13, 177–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gao F, Zhu SR, Sun YC, Du L, Parajulee M, Kang L, Ge F (2008) Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology 37, 29–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Glen DM (2000) The effects of cultural measures on cereal pests and their role in integrated pest management. Integrated Pest Management Reviews 5, 25–40.
Crossref | GoogleScholarGoogle Scholar | open url image1

Glen DM , Green D , Oakley J , Wiltshire CW , Bohan DA , Port GR (2003) Progress in improving the prediction and integrated control of slug damage in arable crops. In ‘Slugs and snails: agricultural, veterinary and environmental perspectives’. (Ed. GBJ Dussart) pp. 35–42. (British Crop Protection Council: Canterbury)

Godan D (1983) ‘Pest slugs and snails.’ (Springer Verlag: Berlin)

Gregg PC, Del Socorro AP, Rochester WA (2001) Field test of a model of migration of moths (Lepidoptera: Noctuidae) in inland Australia. Australian Journal of Entomology 40, 249–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gu HN, Fitt GP, Baker GH (2007) Invertebrate pests of canola and their management in Australia: a review. Australian Journal of Entomology 46, 231–243.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gurr GM , Wratten SD , Barbosa P (2000) Success in conservation biological control of arthropods. In ‘Measures of success in biological control’. (Eds GM Gurr, SD Wratten) pp. 105–132. (Kluwer Academic Publishers: Dordrecht)

Halliday RB (2001) Systematics and biology of the Australian species of Balaustium von Heyden (Acari: Erythraeidae). Australian Journal of Entomology 40, 326–330.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107–126.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hemingway J, Hawkes N, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology 34, 653–665.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hoffmann AA, Porter S, Kovacs I (1997) The response of the major crop and pasture pest, the red-legged earth mite (Halotydeus destructor) to pesticides: dose-response curves and evidence for tolerance. Experimental & Applied Acarology 21, 151–162.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biology 10, 1197–1208.
Crossref |
open url image1

Hopper KR (2003) United States Department of Agriculture – Agricultural Research Service research on biological control of arthropods. Pest Management Science 59, 643–653.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Horne P , Page J (2008) ‘Integrated pest management for crops and pastures.’ (Landlinks Press: Melbourne)

Horne PA (2004) Slugs and biological control in field crops. Grains Research and Development Corporation, Update No. IPM00001, Bendigo.

Huffaker C , Berryman A , Turchin P (1999) Dynamics and regulation of insect populations. In ‘Ecological entomology’. (Eds CB Huffaker, AP Gutierrez) pp. 269–312. (John Wiley & Sons, Inc.: New York)

Iversen T, Harding S (2007) Life table parameters affecting the population development of the woolly beech aphid, Phyllaphis fagi. Entomologia Experimentalis et Applicata 123, 109–117.
Crossref | GoogleScholarGoogle Scholar | open url image1

James C (2007) ‘Global status of commercialized biotech/GM crops: 2007.’ ISAAA Brief no. 37. (International Service for the Acquisition of Agri-biotech Applications: Ithaca, NY)

James DG, Whitney J (1993) Mite populations on grapevines in south eastern Australia – implications for biological control of grapevine mites (Ararina: Tenuipalpidae, Eriophyidae). Experimental & Applied Acarology 17, 259–270.
Crossref | GoogleScholarGoogle Scholar | open url image1

James DG, O’Malley K, Rayner M (1995) Effect of alphacypermethrin and bifenthrin on the survival of five acarine predators of Halotydeus destructor (Acari: Penthaleidae). Experimental & Applied Acarology 19, 647–654.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Jutsum AR, Heaney SP, Perrin BM, Wege PJ (1998) Pesticide resistance: assessment of risk and the development and implementation of effective management strategies. Pesticide Science 54, 435–446.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Knox OGG, Constable GA, Pyke B, Gupta V (2006) Environmental impact of conventional and Bt insecticidal cotton expressing one and two Cry genes in Australia. Australian Journal of Agricultural Research 57, 501–509.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lenard E , Baker G , Hopkins D (2003) ‘Bash ‘em, burn ‘em, bait ‘em. Integrated snail management in crops and pastures.’ (SARDI: Adelaide)

Lobell DB, Field CB (2007) Global scale climate – crop yield relationships and the impacts of recent warming. Environmental Research Letters 2, 014002.
Crossref | GoogleScholarGoogle Scholar | open url image1

Maelzer D, Zalucki MP, Laughlin R (1996) Analysis and interpretation of long-term light trap data for Helicoverpa punctigera (Lepidoptera: Noctuidae) in Australia: population changes and forecasting pest pressure. Bulletin of Entomological Research 86, 547–557. open url image1

Mangano GP , Severtson D (2008) A review of pest and diseases occurrences for 2007. In ‘Agribusiness crop updates proceedings 2008, Perth, Western Australia’. pp. 113–119.

Martikainen E, Haimi J, Ahtiainen J (1998) Effects of dimethoate and benomyl on soil organisms and soil processes – a microcosm study. Applied Soil Ecology 9, 381–387.
Crossref | GoogleScholarGoogle Scholar | open url image1

McDonald G, New TR, Farrow RA (1995) Geographical and temporal distribution of the common armyworm, Mythimna convecta (Lepidoptera: Noctuidae), in eastern Australia: larval habitats and outbreaks. Australian Journal of Zoology 43, 601–629.
Crossref | GoogleScholarGoogle Scholar | open url image1

Michael PJ , Grimm M , Hyder MW , Doyle PT , Mangano GP (1997) Effects of pasture pest damage and grazing management on efficiency of animal production. Meat Research Corporation Report.

Micic S, Strickland G, Weeks AR, Hoffmann AA, Nash M, Henry K, Bellati J, Umina P (2008) Pests of establishing crops in southern Australia: a review of their biology and management options. Australian Journal of Experimental Agriculture 48, 1560–1573.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moens R , Glen DM (2002) Gastropod pests on oilseed rape. In ‘Molluscs as crop pests’. (Ed. GM Barker) pp. 425–440. (CABI Publishing: Oxford)

Moore CB , Moore JH (2007) ‘HerbiGuide – the pesticide expert on a disk.’ (Moore Enterprises: Albany, WA)

Morton N , Collins MD (1989) Managing the pyrethroid revolution in cotton. In ‘Pest management in cotton’. (Eds MB Green, D de Lyon) pp. 153–165. (Ellis Horwood: Chichester, UK)

Nash MA (2008) Fortuitous biological control as a sustainable provider of pest control. PhD Thesis, University of Melbourne.

Nash MA, Thomson LJ, Hoffmann AA (2007) Slug control in canola: monitoring, molluscicidal baits and economic thresholds. Pest Management Science 63, 851–859.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Norton R , Kirkegaard J , Angus J , Potter T (1999) Canola in rotations. In ‘10th international rapeseed congress. Canola in Australia: the first thirty years’. (Eds P Salisbury, T Potter, G McDonald, A Green) pp. 23–28. (The Regional Institute Ltd: Canberra)

Nourbakhsh SH, Soleyman-Nejadian E, Mossadegh MS, Rezvani A (2006) Effect of temperature on the biology of almond green aphid Brachycaudus amygdalinus under laboratory conditions. Applied Entomology and Phytopathology 73, 1–3. open url image1

O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology 50, 271–292.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Olson DM, Wackers FL (2007) Management of field margins to maximize multiple ecological services. Journal of Applied Ecology 44, 13–21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Overton JE (1996) ‘Ecologically-based pest management – new solutions for a new century.’ (National Academy Press: Washington, DC)

Panda S, Sahu SK (2004) Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil. Chemosphere 55, 283–290.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Perry RA, Sandford S, Hutchinson J (1977) The evaluation and exploitation of semi-arid land: Australian experience [and discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 278, 493–505.
Crossref | GoogleScholarGoogle Scholar | open url image1

Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. Journal of Animal and Feed Sciences 11, 1–18. open url image1

Pimentel D , McLaughlin L , Zepp A , Lakitan B , Kraus T , et al (1991) Environmental and economic impacts of reducing US pesticide use. In ‘Handbook of pest management in agriculture’. (Ed. D Pimentel) pp. 679–718. (CRC Press: Boca Raton, FL)

Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJV, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. Journal of Agricultural and Food Chemistry 53, 9023–9030.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Radcliffe RC (2002) ‘Pesticide use in Australia.’ (Australian Academy of Technological Sciences and Engineering: Melbourne)

Readshaw JL (1975) Biological control of orchard mites in Australia with an insecticide resistant predator. Journal of the Australian Institute of Agricultural Science 41, 213–214. open url image1

Roberts JMK, Umina PA, Hoffmann AA, Weeks AR (2008) The susceptibility and tolerance of the lucerne flea, Sminthurus viridis, to currently registered pesticides in Australia. Australian Journal of Entomology in press , open url image1

Robertson LN (1993) Influence of tillage practices (including no-till) on density of soil-dwelling pests and predatory animals in Queensland crops. In ‘Pest control and sustainable agriculture’. (Eds SA Corey, DJ Dall, WM Milne) pp. 349–352. (CSIRO Publishing: Canberra)

Robinson MT, Hoffmann AA (2000) Additional tests on the effects of pesticides on cryptic species of blue oat mite (Penthaleus spp.) and the redlegged earth mite (Halotydeus destructor). Australian Journal of Experimental Agriculture 40, 671–678.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Robinson MT, Hoffmann AA (2001) The pest status and distribution of three cryptic blue oat mite species (Penthaleus spp.) and redlegged earth mite (Halotydeus destructor) in south-eastern Australia. Experimental & Applied Acarology 25, 699–716.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43, 421–447.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Salman AMA (2006) The relationship between temperature and rate of development of the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae). Annals of Agricultural Science 51, 271–281. open url image1

Satar S, Kersting U, Uygun N (2005) Effect of temperature on development and fecundity of Aphis gossypii Glover (Homoptera: Aphididae) on cucumber. Journal of Pest Science 78, 133–137.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schmidt MH , Thies C , Tscharnkte T (2004) The landscape context of arthropod biological control. In ‘Ecological engineering for pest management: advances in habitat manipulation for Arthropods’. (Eds GM Gurr, SD Wratten, MA Altieri) pp. 55–64. (CSIRO Publishing: Melbourne)

Sisterson MS, Biggs RW, Manhardt NM, Carriere Y, Dennehy TJ, Tabashnik BE (2007) Effects of transgenic Bt cotton on insecticide use and abundance of two generalist predators. Entomologia Experimentalis et Applicata 124, 305–311.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south east Queensland – control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effect of pesticides, alternative host plants and augmentative release. Experimental & Applied Acarology 12, 195–217.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

South A (1992) ‘Terrestrial slugs: biology, ecology and control.’ (Chapman & Hall: London)

Stacey DA (2003) Climate and biological control in organic crops. International Journal of Pest Management 49, 205–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. Journal of Economic Entomology 100, 1027–1032.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stinner BR, House GJ (1990) Arthropods and other invertebrates in conservation-tillage agriculture. Annual Review of Entomology 35, 299–318.
Crossref | GoogleScholarGoogle Scholar | open url image1

Symondson WOC (2002) Molecular identification of prey in predator diets. Molecular Ecology 11, 627–641.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tabashnik BE, Biggs RW, Higginson DM, Henderson S, Unnithan DC, Unnithan GC, Ellers-Kirk C, Sisterson MS, Dennehy TJ (2005) Association between resistance to Bt cotton and cadherin genotype in pink bollworm. Journal of Economic Entomology 98, 635–644.
PubMed |
open url image1

Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nature Biotechnology 26, 199–202.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Thackray DJ, Ward LT, Thomas-Carroll ML, Jones RAC (2005) Role of winter-active aphids spreading Barley yellow dwarf virus in decreasing wheat yields in a Mediterranean-type environment. Australian Journal of Agricultural Research 56, 1089–1099.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. Proceedings of the Royal Society B-Biological Sciences 272, 203–210.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thomson LJ, Hoffmann AA (2007) Ecologically sustainable chemical recommendations for agicultural pest control? Journal of Economic Entomology 100, 1741–1750.
Crossref | PubMed |
open url image1

Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. Journal of Applied Ecology 41, 526–538.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tsitsilas A, Stuckey S, Hoffmann AA, Weeks AR, Thomson LJ (2006) Shelterbelts in agricultural landscapes suppress invertebrate pests. Australian Journal of Experimental Agriculture 46, 1379–1388.
Crossref | GoogleScholarGoogle Scholar | open url image1

Turner NC (2004) Sustainable production of crops and pastures under drought in a Mediterranean environment. The Annals of Applied Biology 144, 139–147.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ugalde D, Brungs A, Kaebernick M, McGregor A, Slattery B (2007) Implications of climate change for tillage practice in Australia. Soil & Tillage Research 97, 318–330.
Crossref | GoogleScholarGoogle Scholar | open url image1

Umina PA (2007) Pyrethroid resistance discovered in a major agricultural pest in southern Australia: the redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). Pest Management Science 63, 1185–1190.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Umina PA, Hoffmann AA (1999) Tolerance of cryptic species of blue oat mites (Penthaleus spp.) and the redlegged earth mite (Halotydeus destructor) to pesticides. Australian Journal of Experimental Agriculture 39, 621–628.
Crossref | GoogleScholarGoogle Scholar | open url image1

Umina PA, Hoffmann AA (2004) Plant host associations of Penthaleus species and Halotydeus destructor (Acari: Penthaleidae) and implications for integrated pest management. Experimental & Applied Acarology 33, 1–20.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Umina PA, Hoffmann AA (2005) Competitive interactions among four pest species of earth mites (Acari: Penthaleidae). Journal of Economic Entomology 98, 307–316.
CAS | PubMed |
open url image1

Van Zwieten L (2004) Impacts of pesticides on soil biology in agriculture. In ‘Workshop on current research into soil biology in agriculture, Tamworth’. (Ed. R Lines-Kelly) pp. 72–79. (NSW Department of Agriculture: Orange)

Victorian Government (2008) ‘Land and biodiversity at a time of climate change.’ (Department of Sustainability and the Environment: Melbourne)

Wallace MMH, Mahon JA (1971a) The distribution of Halotydeus destructor and Penthaleus major (Acari: Eupodidae) in Australia in relation to climate and land use. Australian Journal of Zoology 19, 65–76.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wallace MMH, Mahon JA (1971b) The ecology of Sminthurus viridis (Collembola) III. The influence of climate and land use on its distribution and that of an important predator Bdellodes lapidaria (Acari: Bdellidae). Australian Journal of Zoology 19, 177–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Weeks AR, Hoffmann AA (1999) The biology of Penthaleus species in south-eastern Australia. Entomologia Experimentalis et Applicata 92, 179–189.
Crossref | GoogleScholarGoogle Scholar | open url image1

Weeks AR, Hoffmann AA (2000) Competitive interactions between two pest species of earth mites, Halotydeus destructor and Penthaleus major (Acarina: Penthaleidae). Journal of Economic Entomology 93, 1183–1191.
CAS | PubMed |
open url image1

Wilson LJ , Mensah RK , Fitt GP (2004) Implementing integrated pest management in Australian cotton. In ‘Insect pest management: field and protected crops’. (Eds AR Horowitz, I Ishaaya) pp. 97–118. (Springer: Berlin)

Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290, 2088–2093.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Young AG, Port GR (1991) The influence of soil moisture on the activity of Deroceras reticulatum (Muller). The Journal of Molluscan Studies 57, 138–140.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Global Change Biology 12, 27–41.
Crossref | GoogleScholarGoogle Scholar | open url image1