Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

The potential of microarrays to assist shrimp breeding and production: a review

K. J. Wilson A C and E. de la Vega A B
+ Author Affiliations
- Author Affiliations

A Australian Institute of Marine Science, PMB 3, Townsville MC, Qld 4810, Australia.

B School of Integrative Biology, University of Queensland, St Lucia, Qld 4072, Australia.

C Corresponding author. Email: Kate.Wilson@csiro.au

Australian Journal of Experimental Agriculture 45(8) 901-911 https://doi.org/10.1071/EA05060
Submitted: 9 March 2005  Accepted: 20 May 2005   Published: 26 August 2005

Abstract

The shrimp aquaculture industry is a relatively new livestock industry, having developed over the past 30 years. Thus, it is poised to take advantage of new technologies from the outset of selective breeding programs. This contrasts with long established livestock industries, where there are already highly specialised breeds. This review focuses specifically on the potential application of microarrays to shrimp breeding. Potential applications of microarrays in selective breeding programs are summarised. Microarrays can be used as a rapid means to generate molecular markers for genetic linkage mapping, and genetic maps have been constructed for yeast, Arabidopsis and barley using microarray technology. Microarrays can also be used in the hunt for candidate genes affecting particular traits, leading to development of perfect markers for these traits (i.e. causative mutations). However, this requires that microarray analysis be combined with genetic linkage mapping, and that substantial genomic information is available for the species in question. A novel application of microarrays is to treat gene expression as a quantitative trait in itself and to combine this with linkage mapping to identify quantitative trait loci controlling the levels of gene expression; this approach may identify higher level regulatory genes in specific pathways. Finally, patterns of gene expression observed using microarrays may themselves be treated as phenotypic traits in selection programs (e.g. a particular pattern of gene expression might be indicative of a disease tolerant individual).

Microarrays are now being developed for a number of shrimp species in laboratories around the world, primarily with a focus on identifying genes involved in the immune response. However, at present, there is no central repository of shrimp genomic information, which limits the rate at which shrimp genomic research can be progressed. The application of microarrays to shrimp breeding will be extremely limited until there is a shared repository of genomic information for shrimp, and the collective will and resources to develop comprehensive genomic tools for shrimp.

Additional keywords: candidate gene cloning, gene expression, genetic mapping, quantitative trait loci, selective breeding, shrimp aquaculture.


References


Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M , et al . (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. The Plant Cell 12, 647–661.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Aoki T , Hirono I (2005) Molecular biodefense mechanism in Penaeid shrimp. In ‘Proceedings of plant and animal genome XIII’. p. 248. (San Diego)

Argue BJ, Arce SM, Lotz JM, Moss SM (2002) Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura syndrome virus. Aquaculture 204, 447–460.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barrett JC, Kawasaki ES (2003) Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression. Drug Discovery Today 8, 134–141.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Benzie JAH (1998) Penaeid genetics and biotechnology. Aquaculture 164, 23–47.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Research 13, 513–523.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Browdy CL (1998) Recent developments in penaeid broodstock and seed production technologies: improving the outlook for superior captive stocks. Aquaculture 164, 3–21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cai WW, Mao JH, Chow CW, Damani S, Balmain A, Bradley A (2002) Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nature Biotechnology 20, 393–396.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee IT, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell 12, 323–337.
PubMed |
open url image1

Chipman H , Hastie TJ , Tibshirani R (2003) Clustering microarray data. In ‘Statistical analysis of gene expression microarray data’. (Ed. T Speed) pp. 93–158. (Chapman and Hall: Florida)

Crocos P, Preston N, Lehnert S (1999) Genetic improvement of farmed prawns in Australia. Global Aquaculture Advocate 2, 62–63. open url image1

Dhar AK, Dettori A, Roux MM, Klimpel KR, Read B (2003) Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with white spot syndrome virus by cDNA microarrays. Archives of Virology 148, 2381–2396.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nature Reviews. Genetics 3, 22–32.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

de la Vega E, Degnan BM, Hall MR, Cowley JA, Wilson KJ (2004) Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon.  Diseases of Aquatic Organisms 59, 195–203.
PubMed |
open url image1

Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews. Genetics 3, 43–52.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eaves IA, Wicker LS, Ghandour G, Lyons PA, Peterson LB, Todd JA, Glynne RJ (2002) Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetes. Genome Research 12, 232–243.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fegan D (2002) More shrimp-breeding programs needed in Asia. Global Aquaculture Advocate 5, 57–58. open url image1

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 11, 4241–4257.
PubMed |
open url image1

Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R , et al . (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139, 907–920.
PubMed |
open url image1

Gitterle T, Rye M, Salte R, Cock J, Johansen H, Lozano C, Suarez JA, Gjerde B (2005) Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture 243, 83–92.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gracey AY, Cousins AR (2003) Application of microarray technology in environmental and comparative physiology. Annual Review of Physiology 65, 231–259.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grisart B, Coppieters W, Farnir F, Karim L, Ford C , et al . (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research 12, 222–231.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ , et al . (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America 101, 2398–2403.
Crossref | PubMed |
open url image1

Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, L. setiferus.  Developmental and Comparative Immunology 25, 565–577.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hall MR , de la Vega E (2004) Physiological response to stress and health implications in Crustacea. In ‘Styli 2003: thirty years of shrimp farming in New Caledonia’. (Eds C Goarant, Y Harache, A Herbland, C Mugnier) pp. 38–56. (INRA Editions: Plouzane)

Heller RA, Schena M, Chai A, Shalon D, Bedilion T, Gilmore J, Woolley DE, Davis RW (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America 94, 2150–2155.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hernandez R (2002) Shrimp genetic improvement in Mexico. Global Aquaculture Advocate 5, 43–44. open url image1

Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ , et al . (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology 19, 342–347.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, 25e.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends in Genetics 17, 388–391.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M , et al . (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunology 1, 221–226.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kenway MJ , Benzie JAH (1999) High quality larvae from tank-reared Penaeus monodon. In ‘World aquaculture 99’. p. 388. (Sydney)

Khadijah S, Neo SY, Hossain MS, Miller LD, Mathavan S, Kwang J (2003) Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. Journal of Virology 77, 10162–10167.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lehnert SA, Wilson J, Byrne K, Moore SS (1999) Tissue-specific expressed sequence tags from the Black Tiger shrimp Penaeus monodon.  Marine Biotechnology 1, 465–476.
PubMed |
open url image1

Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191, 121–131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nature Genetics 21, 20–24.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liu H, Cheng HH, Tirunagaru V, Sofer L, Burnside J (2001) A strategy to identify positional candidate genes conferring Marek’s disease resistance by integrating DNA microarrays and genetic mapping. Animal Genetics 32, 351–359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Preston NP, Clifford HC (2002) Genetic improvement of farmed shrimp. Results of GAA survey suggest need for greater global cooperation. Global Aquaculture Advocate 5, 48–49. open url image1

Riquet J, Coppieters W, Cambisano N, Arranz JJ, Berzi P , et al . (1999) Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proceedings of the National Academy of Sciences of the United States of America 96, 9252–9257.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Robalino J , Prior S , Metz A , Chapman R , Browdy CL , Gross PS , Warr GW (2003) A functional genomics approach to signal transduction pathways regulating antiviral immunity in marine shrimp. In ‘Proceedings of the 2nd international symposium on aquatic genomics’. p. 57. (Tokyo)

Robinson N (2004) Effective use of new technologies for genetic improvement — the Norway experience. In ‘Proceedings of Australasian aquaculture’. p. 252. (Sydney)

Sax K (1923) The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris.  Genetics 8, 552–560. open url image1

Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N , et al . (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.
PubMed |
open url image1

Thoday JM (1961) Location of polygenes. Nature 191, 368–370. open url image1

Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AHJ, Kou GH, Lo CF (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of Virology 78, 11360–11370.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM , et al . (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R, Friend SH (2003) Expression profiling predicts outcome in breast cancer. Breast Cancer Research 5, 57–58.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang B , Li F , Zhou L , Xiang J (2003) Screening of anti-WSSV-related genes in Chinese Shrimp Fenneropenaeus chinensis through a cDNA microarray approach. In ‘Abstracts of the 2nd international symposium on aquatic genomics’. p. 61.

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America 101, 9915–9920.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wilson K, Li Y, Whan V, Lehnert S, Byrne K , et al . (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphisms. Aquaculture 204, 297–309.
Crossref | GoogleScholarGoogle Scholar | open url image1

Winzeler EA, Richards DR, Conway AR, Goldstein AL, Kalman S , et al . (1998) Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1