Energy intake and nutritional balance of roe deer (Capreolus capreolus) in special Bavarian landscapes in southern Germany
Andreas König A * , Sarah-Alica Dahl A and Wilhelm Windisch BA Technical University of Munich, Wildlife Biology and Management Unit, Hans-Carl-von-Carlowitz Platz 2, Freising D-85354, Germany.
B Technical University of Munich, Chair of Animal Nutrition, Liesel-Beckmann-Strasse 2, Freising D-85354, Germany.
Animal Production Science 63(16) 1648-1663 https://doi.org/10.1071/AN23034
Submitted: 24 January 2023 Accepted: 7 July 2023 Published: 31 July 2023
Abstract
Irrespective of the fact that the European roe deer (Capreolus capreolus) occurs from the Mediterranean to north of the Arctic Circle and is one of the most abundant and widespread species, roe deer are fed in winter in Germany and Austria. Hunters justify the supplementary feeding with the argument that roe deer do not find sufficient high-quality food in our landscape and they would have to starve in winter.
Our aim was to measure the quality and energy content of the browsed roe deer diet (in terms of metabolisable energy, ME) and the daily energy intake by roe deer.
Between 2017 and 2019, rumenreticula of 629 roe deer were collected from five extreme habitats in Bavaria. Samples were examined by standard methods of dietary analysis, such as in vitro ruminal fermentation, crude nutrient analysis and the analysis of neutral/acid detergent fibre and acid detergent lignin. In addition, data on body condition and age were collected for each roe deer.
The diet consumed by roe deer has an energy density between 5.1 MJ/kg dry matter (DM) and 6.1 MJ/kg DM on average. Crude fibre contents in the diet varied between 20% and 38% DM. Roe deer compensate for lower energy densities in vegetation by consuming more diet. Across all habitats, adult consumed an annual mean of between 10.6 and 12.9 MJ ME/day.
Roe deer find sufficient high-energy food in all landscape types. They consume and can utilise raw fibre to the same extent as do red deer or mouflon. Differences in energy density among habitats result from carbohydrate content and are compensated for by more food intake. Energy deficits in roe deer could not be detected in any habitat at any time.
Roe deer do not need supplementary feeding in any habitat. Supplementary feeding leads to browsing damage because of the lack of raw fibre in the feed.
Keywords: crude protein, fibre, habitat, metabolisable energy, NfE, nutritional balance, optimal foraging, rumen, selector.
References
Abbas F, Morellet N, Hewison AJM, Merlet J, Cargnelutti B, Lourtet B, Angibault J-M, Daufresne T, Aulagnier S, Verheyden H (2011) Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia 167, 401-411.
| Crossref | Google Scholar |
Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K, Schober F (2004) Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 286, R174-R181.
| Crossref | Google Scholar |
Behrend A, Lechner-Doll M, Streich WJ, Clauss M (2004) Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon Ovis ammon musimon, and a comparison with roe deer Capreolus capreolus. Acta Theriologica 49, 503-515.
| Crossref | Google Scholar |
Beuković D, Obranović I, Vukadinović M, Popović Z, Horvatović MP, Lavadinović V, Beuković M (2022) The quality of roe deer (Capreolus Capreolus) diet in the winter and spring periods based on rumen contents. Contemporary Agriculture 71, 137-140.
| Crossref | Google Scholar |
Brüggemann J, Giesecke D, Walser-Kärst K (1967) Beiträge zur Wildbiologie und vergleichenden Tierphysiologie. II. Mikroorganismen im Pansen von Rothirsch und Reh. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 23, 143-151.
| Crossref | Google Scholar |
Bubeník A, Lochman J (1956) Futterverbrauch und Tagesrhythmus der Futteraufnahme bei Reh- und Rotwild. Zeitschrift für Jagdwissenschaft 2, 112-118.
| Crossref | Google Scholar |
Clauss M, Hume ID, Hummel J (2010) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4, 979-992.
| Crossref | Google Scholar |
Dahl S-A, Hudler M, Windisch W, Bolduan C, Brugger D, König A (2020) High fibre selection by roe deer (Capreolus capreolus): evidence of ruminal microbiome adaption to seasonal and geographical differences in nutrient composition. Animal Production Science 60, 1303-1314.
| Crossref | Google Scholar |
Dissen J, Hartfiel W (1985) Beobachtungen zum Äsungsverhalten sowie Untersuchungen zur Nährstoffverdaulichkeit von Rehwild. Zeitschrift für Jagdwissenschaft 31, 83-91.
| Crossref | Google Scholar |
Djordjević N, Popović Z, Grubić G (2006) Chemical composition of the rumen contents in roe deer (Capreolus capreolus) as potential quality indicator of their feeding. Journal of Agricultural Sciences 51, 133-140.
| Crossref | Google Scholar |
Drescher-Kaden U, Seifelnasr EA (1977a) Untersuchungen am Verdauungstrakt von Reh, Damhirsch und Mufflon. Mitteilungen 3: Mikroorganismen im Pansen von Reh, Damhirsch und Mufflon. Zeitschrift fur Jagdwissenschaft 23, 64-69.
| Crossref | Google Scholar |
Drescher-Kaden U, Seifelnasr EA (1977b) Untersuchungen am Verdauungstrakt von Rehwild, Damhirsch und Mufflon. Mitteilung 2: Rohnährstoffe im Panseninhalt von Reh, Damhirsch und Mufflon. Zeitschrift für Jagdwissenschaft 23, 6-11.
| Google Scholar |
Drodz A, Osiecki A (1973) Intake and digestibility of natural feeds by roe-deer. Acta Theriologica 18, 81-91.
| Google Scholar |
Dryden GM (2011) Quantitative nutrition of deer: energy, protein and water. Animal Production Science 51, 292-302.
| Crossref | Google Scholar |
Felton AM, Felton A, Raubenheimer D, Simpson SJ, Krizsan SJ, Hedwall P-O, Stolter C (2016) The nutritional balancing act of a large herbivore: an experiment with captive moose (Alces alces L). PLoS ONE 11, e0150870.
| Crossref | Google Scholar |
Felton AM, Wam HK, Stolter C, Mathisen KM, Wallgren M (2018) The complexity of interacting nutritional drivers behind food selection, a review of northern cervids. Ecosphere 9, e02230.
| Crossref | Google Scholar |
Felton AM, Wam HK, Felton A, Simpson SJ, Stolter C, Hedwall P-O, Malmsten J, Eriksson T, Tigabo M, Raubenheimer D (2021) Macronutrient balancing in free-ranging populations of moose. Ecology and Evolution 11, 11223-11240.
| Crossref | Google Scholar |
Gentsch R, Heurich M, König A (2016) Raumverhalten von Rehen (Capreolus capreolus) in der Kulturlandschaft des Bayerischen Waldes. Homeranges, Tagesablauf und Habitatbestimmung. In ‘Wildtiere in einer sich wandelnden Umwelt (2014 in Freising), Große Pflanzenfresser, Große Karnivoren, Große Schutzgebiete (2016 in Trippstadt). Vol. 2’. (Eds A König, U Hohmann, C Ebert, J Mitschke) pp. 55–73. (Verlag Kessel: Freiburg, Germany)
Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443-457.
| Crossref | Google Scholar |
Kamler J, Homolka M (2005) Faecal nitrogen: a potential indicator of red and roe deer diet quality in forest habitats. Folia Zoologica 54, 89-98.
| Google Scholar |
König A, Hudler M, Dahl S-A, Bolduan C, Brugger D, Windisch W (2020) Response of roe deer (Capreolus capreolus) to seasonal and local changes in dietary energy content and quality. Animal Production Science 60, 1315-1325.
| Crossref | Google Scholar |
Lechner I, Barboza P, Collins W, Günther D, Hattendorf B, Hummel J, Clauss M (2009) No ‘bypass’ in adult ruminants: passage of fluid ingested vs. fluid inserted into the rumen in fistulated muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 154, 151-156.
| Crossref | Google Scholar |
Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 7-55.
| Google Scholar |
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12, 1969-1976.
| Crossref | Google Scholar |
Mysterud A (1999) Seasonal migration pattern and home range of roe deer (Capreolus capreolus) in an altitudinal gradient in southern Norway. Journal of Zoology 247, 479-486.
| Crossref | Google Scholar |
Mysterud A, Bischof R, Loe LE, Odden J, Linnell JDC (2012) Contrasting migration tendencies of sympatric red deer and roe deer suggest multiple causes of migration in ungulates. Ecosphere 3, 1-6.
| Crossref | Google Scholar |
Onderscheka K, Jordan HR (1976) Einfluß der Jahreszeit, des Biotops und der Äsungskonkurrenz auf die botanische Zusammensetzung des Panseninhaltes beim Gams-, Reh-, Muffel- und Rotwild. Die Bodenkultur 27, 202-217.
| Google Scholar |
Ossi F, Gaillard J-M, Hebblewhite M, Morellet N, Ranc N, Sandfort R, Kroeschel M, Kjellander P, Mysterud A, Linnell JDC, Heurich M, Soennichsen L, Sustr P, Berger A, Rocca M, Urbano F, Cagnacci F (2017) Plastic response by a small cervid to supplemental feeding in winter across a wide environmental gradient. Ecosphere 8, e01629.
| Crossref | Google Scholar |
Pérez-Barbería FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 1081-1090.
| Crossref | Google Scholar |
Peters W, Hebblewhite M, Mysterud A, Eacker D, Hewison AJM, Linnell JDC, Focardi S, Urbano F, De Groeve J, Gehr B, Heurich M, Jarnemo A, Kjellander P, Kröschel M, Morellet N, Pedrotti L, Reinecke H, Sandfort R, Sönnichsen L, Sunde P, Cagnacci F (2019) Large herbivore migration plasticity along environmental gradients in Europe: life-history traits modulate forage effects. Oikos 128, 416-429.
| Crossref | Google Scholar |
Popović Z, Đorđević N, Đorđević M, Grubić G, Stojanović B (2009) Estimation of the quality of the nutrition of roe deer based on chemical composition of the rumen content. Acta Veterinaria 59, 653-663.
| Google Scholar |
Ritz J, Hofer K, Hofer E, Hackländer K, Immekus D, Codron D, Clauss M (2013) Forestomach pH in hunted roe deer (Capreolus capreolus) in relation to forestomach region, time of measurement and supplemental feeding and comparison among wild ruminant species. European Journal of Wildlife Research 59, 505-517.
| Crossref | Google Scholar |
Sempere AJ, Sokolov VE, Danilkin AA (1996) Capreolus capreolus. Mammalian Species 538, 1-9.
| Crossref | Google Scholar |
Serrano Ferron E, Verheyden H, Hummel J, Cargnelutti B, Lourtet B, Merlet J, González-Candela M, Angibault JM, Hewison AJM, Clauss M (2012) Digestive plasticity as a response to woodland fragmentation in roe deer. Ecological Research 27, 77-82.
| Crossref | Google Scholar |
Tixier H, Duncan P (1996) Are European roe deer browsers? A review of variations in the composition of their diets. Revue d’Écologie 51, 3-17.
| Crossref | Google Scholar |
Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597.
| Crossref | Google Scholar |
Verheyden H, Aubry L, Merlet J, Petibon P, Chauveau-Duriot B, Guillon N, Duncan P (2011) Faecal nitrogen, an index of diet quality in roe deer Capreolus capreolus? Wildlife Biology 17, 166-175.
| Crossref | Google Scholar |
Weibora S (2020) Rehwildfütterung im BJV-Lehr-und Forschungsrevier Wunsiedel. Jagd in Bayern 7-9.
| Google Scholar |
Weiner J (1977) Energy Metabolism of the Roe Deer. Acta Theriologica 22, 3-24.
| Crossref | Google Scholar |
Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94, 105-121.
| Crossref | Google Scholar |
Woodall PF (1992) An evaluation of a rapid method for estimating digestibility. African Journal of Ecology 30, 181-185.
| Crossref | Google Scholar |