Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effects of tonic immobility and corticosterone on mitochondria metabolism in pectoralis major muscle of broiler chickens

Yujing Duan A , Lili Sun A , Jie Liu A , Wenyan Fu A , Song Wang A , Yingdong Ni A B and Ruqian Zhao A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.

B Corresponding author. Email: niyingdong@njau.edu.cn

Animal Production Science 58(12) 2192-2199 https://doi.org/10.1071/AN16401
Submitted: 21 June 2016  Accepted: 12 July 2017   Published: 6 February 2018

Abstract

Tonic immobility (TI), which can be divided into short (STI) or long (LTI) duration, is a trait related to fear and stress response. In a previous study, we found that in broilers that LTI phenotype and chronic corticosterone (CORT) administration caused retarded growth and lower muscle weight compared with their control counterparts. The aim of this study is to determine whether the mitochondrial DNA (mtDNA) copy number and mitochondrial oxidative phosphorylation (OXPHOS), the vital factors involved in regulating energy homeostasis, have been changed by LTI or CORT treatment. The results showed that STI broilers had higher mtDNA copy number and cytochrome c oxidase (COX) enzyme activity compared with LTI broilers. Analysis of mtDNA-encoded OXPHOS genes revealed that the mRNA expression of the COX subunit 1, 2, NADH dehydrogenase (ND) subunits 1, 3 and 6, were also increased in STI broilers compared with LTI broilers. Regarding the transcriptional regulation of mtDNA-encoded OXPHOS genes, no difference was found in the methylation of the mitochondria control region between the TI phenotypes or the CORT treatments. The PGC-1α protein level was higher in STI broilers, but the av uncoupling proteins, did not show significant difference at the protein level between TI phenotypes. These results suggest that the mitochondrial function in pectoralis major muscle of STI broilers is better than that of LTI counterparts. However, chronic CORT administration did not affect the mitochondrial metabolism, indicating the mitochondrial insensitivity to CORT treatment in pectoralis major muscle.

Additional keywords: behaviour, bird, stress.


References

Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genetics 1, 11–15.
Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1Orsbw%3D&md5=6c9d931f907459e82cb092e99a8a73b5CAS |

Basha PM, Poojary A (2014) Mitochondrial dysfunction in aging rat brain regions upon chlorpyrifos toxicity and cold stress: an interactive study. Cellular and Molecular Neurobiology 34, 737–756.
Mitochondrial dysfunction in aging rat brain regions upon chlorpyrifos toxicity and cold stress: an interactive study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCnt7k%3D&md5=afd45d252b91d05040b2cc27a203695aCAS |

Collin A, Cassy S, Buyse J, Decuypere E, Damon M (2005) Potential involvement of mammalian and avian uncoupling proteins in the thermogenic effect of thyroid hormones. Domestic Animal Endocrinology 29, 78–87.
Potential involvement of mammalian and avian uncoupling proteins in the thermogenic effect of thyroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVegsrs%3D&md5=85cae1b5a963a0e616be4d4232cdf84dCAS |

Criscuolo F, Gonzalez-Barroso MD, Le Maho Y, Ricquier D, Bouillaud F (2005) Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proceedings. Biological Sciences 272, 803–810.
Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2iurg%3D&md5=a6c3c318a5d01355d4aec575398bb023CAS |

Desjardins P, Frost E, Morais R (1985) Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Molecular and Cellular Biology 5, 1163–1169.
Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFKmsro%3D&md5=eff512d8fa8af9ad8753c183ee547359CAS |

Duan Y, Fu W, Wang S, Ni Y, Zhao R (2014a) Cholesterol deregulation induced by chronic corticosterone (CORT) stress in pectoralis major of broiler chickens. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 176, 59–64.
Cholesterol deregulation induced by chronic corticosterone (CORT) stress in pectoralis major of broiler chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Khs7nL&md5=2bffe19e14a53a18fa833ee165e63438CAS |

Duan Y, Fu W, Wang S, Ni Y, Zhao R (2014b) Effects of tonic immobility (TI) and corticosterone (CORT) on energy status and protein metabolism in pectoralis major muscle of broiler chickens. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 169, 90–95.
Effects of tonic immobility (TI) and corticosterone (CORT) on energy status and protein metabolism in pectoralis major muscle of broiler chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kht7c%3D&md5=fe26786585a11341b684bcca87df88d4CAS |

Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. Journal of Bioenergetics and Biomembranes 40, 419–424.
The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVagtL3P&md5=55b9d4a4b809efce2ba5901bdef426a6CAS |

Faulk C, Dolinoy DC (2011) Timing is everything The when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6, 791–797.
Timing is everything The when and how of environmentally induced changes in the epigenome of animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Orsrw%3D&md5=f5982a17ccb93a52ab0ab909249c1b2dCAS |

Fontanesi F, Soto IC, Barrientos A (2008) Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 60, 557–568.
Cytochrome c oxidase biogenesis: new levels of regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqu7vN&md5=7870a9c1c8750eabe35c476ed59382e2CAS |

Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nature Protocols 2, 287–295.
Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGntbrF&md5=8fa0df5eeabde7ffeaf39450d8a14e96CAS |

Fu W, Duan Y, Wang S, Ni Y, Grossmann R, Zhao R (2014) Comparative proteomic analysis of the breast muscle response to chronic corticosterone administration in broiler chickens showing long or short tonic immobility. Poultry Science 93, 784–793.
Comparative proteomic analysis of the breast muscle response to chronic corticosterone administration in broiler chickens showing long or short tonic immobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFChsLvO&md5=c03fb1de6c4c9afa5c5a5b12a1d83ffcCAS |

Garesse R, Vallejo CG (2001) Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263, 1–16.
Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Okur0%3D&md5=4509deaefbe486d2cb227b72db08f5fcCAS |

Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology 551, 491–501.
Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFCrsbc%3D&md5=d9066de9d6ad3642418fcd5f23e95385CAS |

Gryzińska M, Andraszek K, Jeżewska-Witkowska WG (2014) Estimation of global content of 5-methylcytosine in DNA during allantoic and pulmonary respiration in the chicken embryo. Folia Biologica 62, 97–101.
Estimation of global content of 5-methylcytosine in DNA during allantoic and pulmonary respiration in the chicken embryo.Crossref | GoogleScholarGoogle Scholar |

Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research 8, 2003–2014.

Hazard D, Couty M, Richard S, Guemene D (2008) Intensity and duration of corticosterone response to stressful situations in Japanese quail divergently selected for tonic immobility. General and Comparative Endocrinology 155, 288–297.
Intensity and duration of corticosterone response to stressful situations in Japanese quail divergently selected for tonic immobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislCltw%3D%3D&md5=fa23077e64438866634cafdaab38440eCAS |

Jia YM, Cong RH, Li RS, Yang XJ, Sun QW, Parvizi N, Zhao RQ (2012) Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. The Journal of Nutrition 142, 1659–1665.
Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWnsLbE&md5=9a236cb544dd304f43f11a7bf7be0d25CAS |

Jia YM, Li RS, Cong RH, Yang XJ, Sun QW, Parvizi N, Zhao RQ (2013) Maternal low-protein diet affects epigenetic regulation of hepatic mitochondrial DNA transcription in a sex-specific manner in newborn piglets associated with GR binding to its promoter. PLoS One 8, e63855
Maternal low-protein diet affects epigenetic regulation of hepatic mitochondrial DNA transcription in a sex-specific manner in newborn piglets associated with GR binding to its promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ynsbo%3D&md5=fd3cb9f07cb29bd60a1dc707be23a457CAS |

Jimenez-Gutierrez LR, Uribe-Carvajal S, Sanchez-Paz A, Chimeo C, Muhlia-Almazan A (2014) The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia. Journal of Bioenergetics and Biomembranes 46, 189–196.
The cytochrome c oxidase and its mitochondrial function in the whiteleg shrimp Litopenaeus vannamei during hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFelu7rJ&md5=476a4f904a3007d66d84a447320e362cCAS |

Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjolin E, Dahlman I, Arner P (2007) Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 50, 2526–2533.
Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snlvVWntQ%3D%3D&md5=7cb199a0ccb3690245ab1a1ee0577bd3CAS |

Kalin NH, Shelton SE, Rickman M, Davidson RJ (1998) Individual differences in freezing and cortisol in infant and mother rhesus monkeys. Behavioral Neuroscience 112, 251–254.
Individual differences in freezing and cortisol in infant and mother rhesus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7nslSisw%3D%3D&md5=5a00ae2257fdae6d9adbe83b5cefcab7CAS |

Lee JY, Jeong W, Lim W, Lim CH, Bae SM, Kim J, Bazer FW, Song G (2013) Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen. PLoS One 8, e61658
Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVGjt7s%3D&md5=d86cd203205d0607932452d8c3caeb7bCAS |

Li RS, Zou HF, Jia YM, Zhao RQ (2013) Glucocorticoid receptor is involved in the breed-dependent transcriptional regulation of mtDNA- and nuclear-encoded mitochondria genes in the liver of newborn piglets. BMC Veterinary Research 9, 87
Glucocorticoid receptor is involved in the breed-dependent transcriptional regulation of mtDNA- and nuclear-encoded mitochondria genes in the liver of newborn piglets.Crossref | GoogleScholarGoogle Scholar |

Li N, Oquendo E, Capaldi RA, Robinson JP, He YD, Hamadeh HK, Afshari CA, Lightfoot-Dunn R, Narayanan PK (2014) A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicological Sciences 142, 261–273.
A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitl2ntr0%3D&md5=21bc1a5ce20b48363b7b8b78b0587941CAS |

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods (San Diego, Calif.) 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=c3e4f53b681890136f18677d055e5dbeCAS |

Mansour AM, Nass S (1970) In vivo cortisol action on RNA synthesis in rat liver nuclei and mitochondria. Nature 228, 665–667.
In vivo cortisol action on RNA synthesis in rat liver nuclei and mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXjvVygtw%3D%3D&md5=941f3f06c5f359cc2eac9d229cf12c23CAS |

Marcinek DJ, Conley KE (2014) In vivo metabolic spectroscopy identifies deficits in mitochondrial quality and capacity in aging skeletal muscle. Clinical Pharmacology and Therapeutics 96, 669–671.
In vivo metabolic spectroscopy identifies deficits in mitochondrial quality and capacity in aging skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M%2FpslOgsg%3D%3D&md5=72751b66ef447f32c7e86e8874fd7c9bCAS |

Matsushima Y, Matsumura K, Ishii S, Inagaki H, Suzuki T, Matsuda Y, Beck K, Kitagawa Y (2003) Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. The Journal of Biological Chemistry 278, 31149–31158.
Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFeqtbk%3D&md5=34ac8043dda54ae171f53713633a1fa9CAS |

Park KS, Kim SK, Kim MS, Cho EY, Lee JH, Lee KU, Pak YK, Lee HK (2003) Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria. The Journal of Nutrition 133, 3085–3090.

Pulliam DA, Deepa SS, Liu YH, Hill S, Lin AL, Bhattacharya A, Shi Y, Sloane L, Viscomi C, Zeviani M, Van Remmen H (2014) Complex IV-deficient Surf1(−/−) mice initiate mitochondrial stress responses. The Biochemical Journal 462, 359–371.
Complex IV-deficient Surf1(−/−) mice initiate mitochondrial stress responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlSrtbnN&md5=2720c01e524e8d5a0a1e7143dc4b2acfCAS |

Raimbault S, Dridi S, Denjean F, Lachuer J, Couplan E, Bouillaud F, Bordas A, Duchamp C, Taouis M, Ricquier D (2001) An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. The Biochemical Journal 353, 441–444.
An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlOrs7o%3D&md5=9d9b329c2b23ec3c0a3e0e270d77e4e8CAS |

Rato L, Duarte AI, Tomas GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliveira PF (2014) Pre-diabetes alters testicular PGC1-alpha/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochimica Et Biophysica Acta-Bioenergetics 1837, 335–344.
Pre-diabetes alters testicular PGC1-alpha/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1GktL0%3D&md5=62218bddf0dfb8020add240832f39527CAS |

Reese WG, Angel C, Newton JE (1984) Immobility reactions: a modified classification. The Pavlovian Journal of Biological Science 19, 137–143.

Rudiger JJ, Roth M, Bihl MP, Cornelius BC, Johnson M, Ziesche R, Block LH (2002) Interaction of C/EBPalpha and the glucocorticoid receptor in vivo and in nontransformed human cells. The FASEB Journal 16, 177–184.
Interaction of C/EBPalpha and the glucocorticoid receptor in vivo and in nontransformed human cells.Crossref | GoogleScholarGoogle Scholar |

Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP (2004) Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research 94, 525–533.
Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFOgurk%3D&md5=ccba7c98a4692cc8d6f65d57ff70f658CAS |

Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America 103, 16260–16265.
PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WmsL3L&md5=df6f1236e137dbfe03d5090a26afc1dfCAS |

Song J, Oh JY, Sung YA, Pak Y, Park KS, Lee HK (2001) Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 24, 865–869.
Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVCku70%3D&md5=b0d255e194207a2601f8795a4f2b4b08CAS |

Sun Z, Liu M, Zou H, Li X, Shao G, Zhao R (2013) Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae. Veterinary Microbiology 167, 425–433.
Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOnsLzI&md5=2edda88bbbc98567a8a5d10f065fa718CAS |

Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D (2003) Acquirement of brown fat cell features by human white adipocytes. The Journal of Biological Chemistry 278, 33370–33376.
Acquirement of brown fat cell features by human white adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1altrk%3D&md5=1a406fb7b1a59350ffc5064ea26b3223CAS |

Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y (2002) Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Letters 529, 313–318.
Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1ans7k%3D&md5=127c678e5f32f88266b2472dc073f914CAS |

Toyomizu M, Kikusato M, Kawabata Y, Azad MAK, Inui E, Amo T (2011) Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 159, 75–81.
Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens.Crossref | GoogleScholarGoogle Scholar |

van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, van de Kamp JJ, Maassen JA (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genetics 1, 368–371.
Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1yktLk%3D&md5=01e40673c2f974e109634a085b07dbdbCAS |

Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular Research 79, 208–217.
Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Wisr8%3D&md5=d3f7772abd18a3c4670c80f517770503CAS |

Vijayasarathy C, Damle S, Prabu SK, Otto CM, Avadhani NG (2003) Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. European Journal of Biochemistry 270, 871–879.
Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlCmt7c%3D&md5=15e1edf309dac433484275e5ba37b539CAS |

Wang S, Ni Y, Guo F, Fu W, Grossmann R, Zhao R (2013) Effect of corticosterone on growth and welfare of broiler chickens showing long or short tonic immobility. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 164, 537–543.
Effect of corticosterone on growth and welfare of broiler chickens showing long or short tonic immobility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWgsbg%3D&md5=e55045b62be058cd270636d53732fbb4CAS |

Williams RS (1986) Mitochondrial gene-expression in mammalian striated-muscle - evidence that variation in gene dosage is the major regulatory event. The Journal of Biological Chemistry 261, 2390–2394.

Wu ZD, Puigserver P, Andersson U, Zhang CY, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124.
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1Kktrs%3D&md5=ad519585cafd3117d5c4f95decb8b1e0CAS |

You YN, Short KR, Jourdan M, Klaus KA, Walrand S, Nair KS (2009) The effect of high glucocorticoid administration and food restriction on rodent skeletal muscle mitochondrial function and protein metabolism. PLoS One 4, e5283
The effect of high glucocorticoid administration and food restriction on rodent skeletal muscle mitochondrial function and protein metabolism.Crossref | GoogleScholarGoogle Scholar |

Yu FL, Feigelson P (1970) A comparative study of RNA synthesis in rat hepatic nuclei and mitochondria under the influence of cortisone. Biochimica et Biophysica Acta 213, 134–141.
A comparative study of RNA synthesis in rat hepatic nuclei and mitochondria under the influence of cortisone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2Fmt1ejsQ%3D%3D&md5=b3b284d4f2067c619fdefb07ddd3a50fCAS |

Zhang H, Singh KK (2014) Global genetic determinants of mitochondrial DNA copy number. PLoS One 9, e105242
Global genetic determinants of mitochondrial DNA copy number.Crossref | GoogleScholarGoogle Scholar |