Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE (Open Access)

Revisiting summer infertility in the pig: could heat stress-induced sperm DNA damage negatively affect early embryo development?

Santiago T. Peña , Jr A B C F , Bruce Gummow C D , Anthony J. Parker E and Damien B. B. P. Paris B
+ Author Affiliations
- Author Affiliations

A College of Veterinary Medicine, Visayas State University, Baybay City, Leyte, 6521-A, Philippines.

B Discipline of Biomedical Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia.

C Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia.

D Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.

E College of Food, Agricultural and Environmental Sciences, Ohio State University, Wooster, OH 44691, USA.

F Corresponding author. Email: santiago.pena@my.jcu.edu.au

Animal Production Science 57(10) 1975-1983 https://doi.org/10.1071/AN16079
Submitted: 23 July 2015  Accepted: 19 June 2016   Published: 24 August 2016

Journal Compilation © CSIRO Publishing 2017 Open Access CC BY-NC-ND

Abstract

Temperature is a crucial factor in mammalian spermatogenesis. The scrotum, pampiniform plexus, and cremaster and dartos muscles in mammals are specific adaptations to ensure sperm production in a regulated environment 4−6°C below internal body temperature. However, the limited endogenous antioxidant systems inherent in mammalian spermatozoa compounded by the loss of cytosolic repair mechanisms during spermatogenesis, make the DNA in these cells particularly vulnerable to oxidative damage. Boar sperm is likely to be more susceptible to the effects of heat stress and thus oxidative damage due to the relatively high unsaturated fatty acids in the plasma membrane, low antioxidant capacity in boar seminal plasma, and the boar’s non-pendulous scrotum. Heat stress has a significant negative impact on reproductive performance in piggeries, which manifests as summer infertility and results in productivity losses that amount to millions of dollars. This problem is particularly prevalent in tropical and subtropical regions where ambient temperatures rise beyond the animal’s zone of thermal comfort. Based on preliminary studies in the pig and other species, this article discusses whether heat stress could induce sufficient DNA damage in boar sperm to significantly contribute to the high rates of embryo loss and pregnancy failure observed in the sow during summer infertility. Heat stress-induced damage to sperm DNA can lead to disrupted expression of key developmental genes essential for the differentiation of early cell lineages, such as the trophectoderm, and can distort the timely formation of the blastocyst; resulting in a failure of implantation and ultimately pregnancy loss. Confirming such a link would prompt greater emphasis on boar management and strategies to mitigate summer infertility during periods of heat stress.

Additional keywords: boar, DNA fragmentation, embryo loss, seasonal infertility, spermatozoa, Sus scrofa domestica, temperature.


References

Ahmad E, Brooks JE, Hussain I, Khan MH (1995) Reproduction in Eurasian wild boar in central Punjab, Pakistan. Acta Theriologica 40, 163–173.
Reproduction in Eurasian wild boar in central Punjab, Pakistan.Crossref | GoogleScholarGoogle Scholar |

Ahmadi A, Ng SC (1999) Fertilizing ability of DNA-damaged spermatozoa. The Journal of Experimental Zoology 284, 696–704.
Fertilizing ability of DNA-damaged spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fgt1OgsA%3D%3D&md5=4786fa3a26c7e89a95887a0c6802df80CAS | 10531556PubMed |

Aitken RJ, De Iuliis GN (2010) On the possible origins of DNA damage in human spermatozoa. Molecular Human Reproduction 16, 3–13.
On the possible origins of DNA damage in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOhtrrN&md5=833dcaae70fc68492c8d884c2af763a4CAS | 19648152PubMed |

Aitken RJ, De Iuliis GN, Gibb Z, Baker MA (2012) The simmet lecture: new horizons on an old landscape-oxidative stress, DNA damage and apoptosis in the male germ line. Reproduction in Domestic Animals 47, 7–14.
The simmet lecture: new horizons on an old landscape-oxidative stress, DNA damage and apoptosis in the male germ line.Crossref | GoogleScholarGoogle Scholar | 22827344PubMed |

Anderson LL (1978) Growth, protein content and distribution of early pig embryos. The Anatomical Record 190, 143–153.
Growth, protein content and distribution of early pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c7itF2msg%3D%3D&md5=818c7ac4db34d360a6afe1da3f9fd747CAS | 626412PubMed |

Ashikawa I, Kinosita K, Ikegami A, Tobita T (1987) Changes of the DNA packaging mode during boar sperm maturation. Biochimica et Biophysica Acta – Gene Structure and Expression 908, 263–267.
Changes of the DNA packaging mode during boar sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvFelsbg%3D&md5=b35a981347ff7e8d08c7f153e56eddb1CAS |

Auvigne V, Leneveu P, Jehannin C, Peltoniemi O, Sallé E (2010) Seasonal infertility in sows: a five year field study to analyze the relative roles of heat stress and photoperiod. Theriogenology 74, 60–66.
Seasonal infertility in sows: a five year field study to analyze the relative roles of heat stress and photoperiod.Crossref | GoogleScholarGoogle Scholar | 20189636PubMed |

Barratt CLR, Aitken RJ, Björndahl L, Carrell DT, de Boer P, Kvist U, Lewis SEM, Perreault SD, Perry MJ, Ramos L, Robaire B, Ward S, Zini A (2010) Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Human Reproduction (Oxford, England) 25, 824–838.
Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report.Crossref | GoogleScholarGoogle Scholar |

Bazer FW, Johnson GA (2014) Pig blastocyst – uterine interactions. Differentiation 87, 52–65.
Pig blastocyst – uterine interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFWjuw%3D%3D&md5=a988cecabeb38d67eb6f33eeec55e27eCAS | 24388881PubMed |

Bazer FW, Thatcher WW (1977) Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium. Prostaglandins 14, 397–401.
Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXls1WrtL8%3D&md5=9c6ea10ee291b7d1a205cc9a946f3382CAS | 897228PubMed |

Bettegowda A, Smith GW (2007) Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development. Frontiers in Bioscience 12, 3713–3726.
Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Kmur0%3D&md5=55593dbd843c433647d39e99ac396f48CAS | 17485333PubMed |

Bloemhof S, Van der Waaij E, Merks J, Knol E (2008) Sow line differences in heat stress tolerance expressed in reproductive performance traits. Journal of Animal Science 86, 3330–3337.
Sow line differences in heat stress tolerance expressed in reproductive performance traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2jsbzN&md5=6917fa6826c9db3764f08eed988e7085CAS | 18708608PubMed |

Boe-Hansen GB, Ersbøll AK, Greve T, Christensen P (2005) Increasing storage time of extended boar semen reduces sperm DNA integrity. Theriogenology 63, 2006–2019.
Increasing storage time of extended boar semen reduces sperm DNA integrity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Kjtbs%3D&md5=dc198e464ca7b786e59c6f5b212fd8a8CAS | 15823356PubMed |

Boe-Hansen GB, Christensen P, Vibjerg D, Nielsen MB, Hedeboe AM (2008) Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 69, 728–736.
Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVWhsL0%3D&md5=3f2514ba8ddf3341c315fc75faf32c4fCAS | 18242673PubMed |

Bolet G (1986) Timing and extent of embryonic mortality in pigs, sheep and goats: genetic variability. In ‘Embryonic mortality in farm animals’. (Eds JM Sreenan, MG Diskin) pp. 12–43. (Martinus Nijhoff Publishers: Dordrecht, The Netherlands)

Boma MH, Bilkei G (2006) Seasonal infertility in Kenyan pig breeding units. The Onderstepoort Journal of Veterinary Research 73, 229–232.
Seasonal infertility in Kenyan pig breeding units.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nitVyjsw%3D%3D&md5=1f1e065adcf70cb7ebec1d6ce1ecf34dCAS | 17058445PubMed |

Britt JH, Szarek VE, Levis DG (1983) Characterization of summer infertility of sows in large confinement units. Theriogenology 20, 133–140.
Characterization of summer infertility of sows in large confinement units.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVKisQ%3D%3D&md5=05686a14b7b06c53b5409a9db92c0991CAS | 16725840PubMed |

Bruce AW, Zernicka-Goetz M (2010) Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate. Current Opinion in Genetics & Development 20, 485–491.
Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyisLzI&md5=6a25df850314ed8f56114e736a9398f6CAS |

Cameron RD, Blackshaw AW (1980) The effect of elevated ambient temperature on spermatogenesis in the boar. Journal of Reproduction and Fertility 59, 173–179.
The effect of elevated ambient temperature on spermatogenesis in the boar.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3ltFGiug%3D%3D&md5=7e2e6593c8afe475cee38f5a213cad62CAS | 7401033PubMed |

Casady RB, Myers RM, Legates JE (1953) The effect of exposure to high ambient temperature on spermatogenesis in the dairy bull. Journal of Dairy Science 36, 14–23.
The effect of exposure to high ambient temperature on spermatogenesis in the dairy bull.Crossref | GoogleScholarGoogle Scholar |

Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell 10, 615–624.
Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyktro%3D&md5=f9b58fd045d45ed3b6963cb2d639204bCAS | 16678776PubMed |

Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. The Journal of Clinical Investigation 120, 995–1003.
Making the blastocyst: lessons from the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVChs74%3D&md5=e488772fa52c5794c1c7fbf3eda9487eCAS | 20364097PubMed |

Cohen JE (2003) Human population: the next half century. Science 302, 1172–1175.
Human population: the next half century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Smt7w%3D&md5=84d2b1688502b119fe584db2bafab352CAS | 14615528PubMed |

Didion BA, Kasperson KM, Wixon RL, Evenson DP (2009) Boar fertility and sperm chromatin structure status: a retrospective report. Journal of Andrology 30, 655–660.
Boar fertility and sperm chromatin structure status: a retrospective report.Crossref | GoogleScholarGoogle Scholar | 19478334PubMed |

Dostàlovà Z, Calvete JJ, Sanz L, Töpfer-Petersen E (1994) Quantitation of boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa. Biochimica et Biophysica Acta – General Subjects 1200, 48–54.
Quantitation of boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Dostalova Z, Calvete JJ, Sanz L, Topferpetersen E (1995) Boar spermadhesin Awn-1 – oligosaccharide and zona-pellucida binding characteristics. European Journal of Biochemistry 230, 329–336.
Boar spermadhesin Awn-1 – oligosaccharide and zona-pellucida binding characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFaltLc%3D&md5=18ebb557921b4098626a9a6773e98d6fCAS | 7601119PubMed |

du Puy L, Chuva de Sousa Lopes SM, Haagsman HP, Roelen BAJ (2011) Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75, 513–526.
Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kmsw%3D%3D&md5=106371a5d8b651ba037b71c71a83133dCAS | 21074831PubMed |

Egbunike GN, Dede TI (1980) The influence of short-term exposure to tropical sunlight on boar seminal characteristics. International Journal of Biometeorology 24, 129–135.
The influence of short-term exposure to tropical sunlight on boar seminal characteristics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3is12itg%3D%3D&md5=44961c3851a9dbf5d08e3b43d0254ffbCAS | 7390642PubMed |

Einarsson S, Brandt Y, Lundeheim N, Madej A (2008) Stress and its influence on reproduction in pigs: a review. Acta Veterinaria Scandinavica 50, 48–55.
Stress and its influence on reproduction in pigs: a review.Crossref | GoogleScholarGoogle Scholar |

Ekhlasi-Hundrieser M, Gohr K, Wagner A, Tsolova M, Petrunkina A, Topfer-Petersen E (2005) Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biology of Reproduction 73, 536–545.
Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovV2qtLo%3D&md5=30926b068f96357026aff2273dc0ac13CAS | 15888732PubMed |

Enciso M, Lopez-Fernandez C, Fernandez JL, Garcia P, Gosalbez A, Gosalvez J (2006) A new method to analyze boar sperm DNA fragmentation under bright-field or fluorescence microscopy. Theriogenology 65, 308–316.
A new method to analyze boar sperm DNA fragmentation under bright-field or fluorescence microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCqtb%2FO&md5=c2b76a37570ccf305c784d28a0d43660CAS | 15996725PubMed |

Evenson DP (1999) Loss of livestock breeding efficiency due to uncompensable sperm nuclear defects. Reproduction, Fertility and Development 11, 1–15.
Loss of livestock breeding efficiency due to uncompensable sperm nuclear defects.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ktlagsA%3D%3D&md5=4ef590fbf93f9130037b4e92b173f89fCAS |

Evenson DP, Wixon R (2006) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65, 979–991.
Clinical aspects of sperm DNA fragmentation detection and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKrt7Y%3D&md5=135148e6a03ee894cd529f94c97187e8CAS | 16242181PubMed |

Evenson DP, Thompson L, Jost L (1994) Flow cytometric evaluation of boar semen by the sperm chromatin structure assay as related to cryopreservation and fertility. Theriogenology 41, 637–651.
Flow cytometric evaluation of boar semen by the sperm chromatin structure assay as related to cryopreservation and fertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWktQ%3D%3D&md5=d827050f3a29b2702bd494f3886aa019CAS | 16727419PubMed |

Evenson DP, Kasperson K, Wixon RL, Didion BA (2009) Boar fertility and sperm chromatin structure assay defined sperm DNA fragmentation. Reproduction, Fertility and Development 21, 212
Boar fertility and sperm chromatin structure assay defined sperm DNA fragmentation.Crossref | GoogleScholarGoogle Scholar |

Fatehi AN, Bevers MM, Schoevers E, Roelen BAJ, Colenbrander B, Gadella BM (2006) DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. Journal of Andrology 27, 176–188.
DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit12jtb0%3D&md5=2076f53a0896c76f390484e093a824e0CAS | 16304212PubMed |

Fernandes CE, Dode MAN, Pereira D, Silva AEDF (2008) Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro fertilizing ability. Theriogenology 70, 1560–1568.
Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro fertilizing ability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjs1yntA%3D%3D&md5=f9a0b320bd2fa7e3aafacb00fd748ec0CAS | 18723216PubMed |

Flowers WL (1997) Management of boars for efficient semen production. Journal of Reproduction and Fertility. Supplement 52, 67–78.

Flowers WL (2008) Genetic and phenotypic variation in reproductive traits of AI boars. Theriogenology 70, 1297–1303.
Genetic and phenotypic variation in reproductive traits of AI boars.Crossref | GoogleScholarGoogle Scholar | 18640711PubMed |

Food and Agriculture Organization (2009) Global agriculture towards 2050. How to feed the world in 2050: high level expert forum. Viale delle Terme di Caracalla, 00153 Rome, Italy. Available at http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf [Verified 14 November 2014]

Food and Agriculture Organization (FAO), International Fund for Agricultural Development (IFAD), World Food Program (WFP) (2014) The state of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition. Rome, FAO. Available at http://www.fao.org/publications/sofi/2014/en/ [Verified 16 October 2015]

Foreign Agricultural Service (2015) Livestock and poultry: world markets and trade. Foreign Agricultural Service, United States Department of Agriculture [Online]. Available at http://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.PDF [Verified 11 January 2016]

Fortes MR, Satake N, Corbet D, Corbet N, Burns B, Moore S, Boe‐Hansen G (2014) Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology 2, 370–378.
Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvF2ks7c%3D&md5=8a9e8eea8f14d77f6bed163bdf6a5e3dCAS | 24634207PubMed |

Gandini L, Lombardo F, Paoli D, Caponecchia L, Familiari G, Verlengia C, Dondero F, Lenzi A (2000) Study of apoptotic DNA fragmentation in human spermatozoa. Human Reproduction (Oxford, England) 15, 830–839.
Study of apoptotic DNA fragmentation in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3gs1Oksg%3D%3D&md5=513bca92e60fdde5166b69496af2bb98CAS |

Gasperowicz M, Natale DR (2011) Establishing three blastocyst lineages – then what? Biology of Reproduction 84, 621–630.
Establishing three blastocyst lineages – then what?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFantbk%3D&md5=52cd1c7fc0b5605df954dfb0a22c0f96CAS | 21123814PubMed |

Geisert R, Schmitt R (2002) Early embryonic survival in the pig: can it be improved? Journal of Animal Science 80, E54–E65.

Geisert R, Zavy M, Moffatt R, Blair R, Yellin T (1989) Embryonic steroids and the establishment of pregnancy in pigs. Journal of Reproduction and Fertility. Supplement 40, 293–305.

Gholami H, Chamani M, Towhidi A, Fazeli MH, Karaj I (2011) Improvement of semen quality in Holstein bulls during heat stress by dietary supplementation of Omega-3 fatty acids. International Journal of Fertility & Sterility 4, 160–167.

Gourdine JL, Bidanel JP, Noblet J, Renaudeau D (2006) Effects of breed and season on performance of lactating sows in a tropical humid climate. Journal of Animal Science 84, 360–369.

Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P (2009) Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics 238, 2014–2024.
Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKrsbbO&md5=e537b0a18940af578eddbe4bcede8ee6CAS | 19618464PubMed |

Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478.

Heitman H, Cockrell JR, Morrison SR (1984) Cycling ambient temperature effect on boar semen. Animal Science 38, 129–132.

Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill WB, Kruger TF (2004) Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertility and Sterility 81, 965–972.
Influence of deoxyribonucleic acid damage on fertilization and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFCrtrY%3D&md5=22338ff26c98dc891d7ac8e72de99023CAS | 15066449PubMed |

Hennessy DP, Williamson PE (1984) Stress and summer infertility in pigs. Australian Veterinary Journal 61, 212–215.
Stress and summer infertility in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fks1ehsQ%3D%3D&md5=1fbee1031835ab66da431cef196ddc6bCAS |

Huang SY, Kuo YH, Lee YP, Tsou HL, Lin EC, Ju CC, Lee WC (2000) Association of heat shock protein 70 with semen quality in boars. Animal Reproduction Science 63, 231–240.
Association of heat shock protein 70 with semen quality in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlOmtLo%3D&md5=32f45aabd0476808fdb2b8f6c4547e53CAS | 10989233PubMed |

Hughes P, van Wettere W (2010) Seasonal infertility in pigs. Pork Cooperative Research Centre. Available at http://www.porkcrc.com.au/101217_SI.pdf [Verified 19 October 2015]

Ingram DL (1964) Effect of environmental temperature on heat loss and thermal insulation in young pig. Research in Veterinary Science 5, 357–364.

Ingram D (1965) Evaporative cooling in the pig. Nature 207, 415–416.
Evaporative cooling in the pig.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287ls1ejtg%3D%3D&md5=7006a697a313d373097dee50bdc8beacCAS | 5885859PubMed |

Jeanblanc M, Salvaing J, Mason K, Debey P, Beaujean N (2008) Embryonic genome activation. Gynecologie, Obstetrique & Fertilite 36, 1126–1132.
Embryonic genome activation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjltVCmsA%3D%3D&md5=8544bae5f294877f1fff9dc7321d9a68CAS |

Johnson GA, Bazer FW, Burghardt RC, Spencer TE, Wu G, Bayless KJ (2009) Conceptus-uterus interactions in pigs: endometrial gene expression in response to estrogens and interferons from conceptuses. Society of Reproduction and Fertility. Supplement 66, 321–332.

Karabinus DS, Vogler CJ, Saacke RG, Evenson DP (1997) Chromatin structural changes in sperm after scrotal insulation of Holstein bulls. Journal of Andrology 18, 549–555.

Knox R (2003) The anatomy and physiology of sperm production in boars. Department of Animal Sciences, University of Illinois, USA. Available at http://www.ansci.wisc.edu/jjp1/pig_case/html/library/boara&p.pdf [Verified 16 October 2015]

Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nature Reviews. Genetics 6, 633–642.
Paternal contribution: new insights and future challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFeqtbo%3D&md5=1bb1d205f57572cb157e5c2d31881fc9CAS | 16136654PubMed |

Kuijk EW, du Puy L, Van Tol HTA, Oei CHY, Haagsman HP, Colenbrander B, Roelen BAJ (2008) Differences in early lineage segregation between mammals. Developmental Dynamics 237, 918–927.
Differences in early lineage segregation between mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFaktbY%3D&md5=58dda286e6d0fc711ef6bba034555687CAS | 18330925PubMed |

Kumar M, Kumar K, Jain S, Hassan T, Dada R (2013) Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68, 5–14.
Novel insights into the genetic and epigenetic paternal contribution to the human embryo.Crossref | GoogleScholarGoogle Scholar | 23503950PubMed |

Latham KE (1999) Mechanisms and control of embryonic genome activation in mammalian embryos. In ‘International review of cytology. Vol. 193’. (Ed. WJ Kwang) pp. 71–124. (Academic Press, USA)

Latham KE, Schultz RM (2001) Embryonic genome activation. Frontiers in Bioscience 6, D748–D759.
Embryonic genome activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslKhuro%3D&md5=06e5db9858063a511b749e602efbc76aCAS | 11401780PubMed |

Leibfiied-Rutledge ML (1996) Gene expression during early embryonic development. Journal of Animal Science 74, 36–49.

Lewis SE, Aitken RJ (2005) DNA damage to spermatozoa has impacts on fertilisation and pregnancy. Cell and Tissue Research 322, 33–41.
DNA damage to spermatozoa has impacts on fertilisation and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnksl2ruw%3D%3D&md5=479b12716bce409d6efa38d84277fe09CAS | 15912407PubMed |

López Rodríguez A, Rijsselaere T, Beek J, Vyt P, Van Soom A, Maes D (2013) Boar seminal plasma components and their relation with semen quality. Systems Biology in Reproductive Medicine 59, 5–12.
Boar seminal plasma components and their relation with semen quality.Crossref | GoogleScholarGoogle Scholar | 23083319PubMed |

Love RJ (1978) Definition of a seasonal infertility problem in pigs. The Veterinary Record 103, 443–446.
Definition of a seasonal infertility problem in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7mtVKmsQ%3D%3D&md5=e295b9de15064bfeda5b389490ce6121CAS | 749312PubMed |

Love RJ (1981) Seasonal infertility in pigs. The Veterinary Record 109, 407–409.
Seasonal infertility in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387nslGluw%3D%3D&md5=42a4a6f1dbd03af11e278fb37aca226aCAS | 7340074PubMed |

Love CC, Kenney RM (1999) Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biology of Reproduction 60, 615–620.
Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFekt7c%3D&md5=303c5e410dd156e8c28b2efce1aded10CAS | 10026107PubMed |

Macklon NS, Geraedts JP, Fauser BC (2002) Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Human Reproduction Update 8, 333–343.
Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVOgtLc%3D&md5=96e6d4f43469e020e4ac47fd94ffd685CAS | 12206468PubMed |

Malmgren L (1989) Experimentally induced testicular alterations in boars: sperm morphology changes in mature and peripubertal boars. Journal of Veterinary Medicine Series A 36, 411–420.
Experimentally induced testicular alterations in boars: sperm morphology changes in mature and peripubertal boars.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FitF2gug%3D%3D&md5=5e4d64396aba9b1416268e67514166b2CAS | 2508370PubMed |

McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370, 1253–1263.
Food, livestock production, energy, climate change, and health.Crossref | GoogleScholarGoogle Scholar | 17868818PubMed |

McNitt JI, First NL (1970) Effects of 72-hour heat stress on semen quality in boars. International Journal of Biometeorology 14, 373–380.
Effects of 72-hour heat stress on semen quality in boars.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M7ltlWitQ%3D%3D&md5=e3bc25139769dce1d207e51b7a758283CAS | 5508237PubMed |

Messerschmidt DM, Kemler R (2010) Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Developments in Biologicals 344, 129–137.
Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVClu77M&md5=6e1126e5b5c1a7ba49b08783e037c806CAS |

Meyer HH (1994) Luteal versus placental progesterone: the situation in the cow, pig and bitch. Experimental and Clinical Endocrinology 102, 190–192.
Luteal versus placental progesterone: the situation in the cow, pig and bitch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsV2gtLo%3D&md5=6d760973bf6186505cd83d2a0f9291b9CAS | 7995339PubMed |

Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. The Journal of Reproduction and Development 53, 707–715.
Zygotic gene activation and maternal factors in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGgs7fI&md5=08eb3f4ac4fd6c51199e057b44cb3ef6CAS | 17827882PubMed |

Moule GR, Waites GM (1963) Seminal degeneration in the ram and its relation to the temperature of the scrotum. Journal of Reproduction and Fertility 5, 433–446.
Seminal degeneration in the ram and its relation to the temperature of the scrotum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF387isl2luw%3D%3D&md5=89d452d155d9c68d8b5fce0355957b86CAS | 13936300PubMed |

Nakamura M, Namiki M, Okuyama A, Matsui T, Doi Y, Takeyama M, Fujioka H, Nishimune Y, Matsumoto K, Sonoda T (1987) Temperature sensitivity of human spermatogonia and spermatocytes in vitro. Systems Biology in Reproductive Medicine 19, 127–132.

National Pork Board (2014) Pork quick facts 2014. Pork Check Off. National Pork Board, Des Moines, IA, USA. Available at http://www.pork.org/pork-quick-facts/ [Verified 16 October 2015]

Novak S, Ruiz-Sanchez A, Dixon WT, Foxcroft GR, Dyck MK (2010) Seminal plasma proteins as potential markers of relative fertility in boars. Journal of Andrology 31, 188–200.
Seminal plasma proteins as potential markers of relative fertility in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Shtbw%3D&md5=bcaaac2ca79d682cabb263cafefe485dCAS | 19713565PubMed |

Okazaki T, Akiyoshi T, Kan M, Mori M, Teshima H, Shimada M (2012) Artificial insemination with seminal plasma improves the reproductive performance of frozen-thawed boar epididymal spermatozoa. Journal of Andrology 33, 990–998.
Artificial insemination with seminal plasma improves the reproductive performance of frozen-thawed boar epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqt77E&md5=ce3ac1b54b52d6d52980a299158463d1CAS | 22282435PubMed |

Oron E, Ivanova N (2012) Cell fate regulation in early mammalian development. Physical Biology 9, 045002
Cell fate regulation in early mammalian development.Crossref | GoogleScholarGoogle Scholar | 22871593PubMed |

Paterson A, Barker I, Lindsay D (1978) Summer infertility in pigs: its incidence and characteristics in an Australian commercial piggery. Australian Journal of Experimental Agriculture 18, 698–701.
Summer infertility in pigs: its incidence and characteristics in an Australian commercial piggery.Crossref | GoogleScholarGoogle Scholar |

Paul C, Melton DW, Saunders PT (2008a) Do heat stress and deficits in DNA repair pathways have a negative impact on male fertility? Molecular Human Reproduction 14, 1–8.
Do heat stress and deficits in DNA repair pathways have a negative impact on male fertility?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2ntbc%3D&md5=9758b19114592e9b0de83bab5ea15376CAS | 18175790PubMed |

Paul C, Murray AA, Spears N, Saunders PT (2008b) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction (Cambridge, England) 136, 73–84.
A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVSnsr4%3D&md5=9d1a5c27f3f7c485c2f6c643198a1107CAS |

Peña S, Jr, Gummow B, Parker AJ, Paris DBBP (2016) Summer induces DNA damage in boar sperm: implications for the management of seasonal infertility. In ‘18th international congress of animal reproduction’, 26–30 June 2016, Tours, France. pp. 216–217.

Pérez-Crespo M, Pintado B, Gutiérrez-Adán A (2008) Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Molecular Reproduction and Development 75, 40–47.
Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice.Crossref | GoogleScholarGoogle Scholar | 17474098PubMed |

Pérez-Llano B, López-Fernández C, García-Casado P, Arroyo F, Gosalbez A, Sala R, Gosálvez J (2010) Dynamics of sperm DNA fragmentation in the swine: ejaculate and temperature effects. Animal Reproduction Science 119, 235–243.
Dynamics of sperm DNA fragmentation in the swine: ejaculate and temperature effects.Crossref | GoogleScholarGoogle Scholar | 20149563PubMed |

Perry JS, Rowlands IW (1962) Early pregnancy in the pig. Journal of Reproduction and Fertility 4, 175–188.
Early pregnancy in the pig.Crossref | GoogleScholarGoogle Scholar |

Petrocelli H, Batista C, Gosálvez J (2015) Seasonal variation in sperm characteristics of boars in southern Uruguay. Revista Brasileira de Zootecnia 44, 1–7.
Seasonal variation in sperm characteristics of boars in southern Uruguay.Crossref | GoogleScholarGoogle Scholar |

Prunier A, de Bragança MM, Le Dividich J (1997) Influence of high ambient temperature on performance of reproductive sows. Livestock Production Science 52, 123–133.
Influence of high ambient temperature on performance of reproductive sows.Crossref | GoogleScholarGoogle Scholar |

Quesnel H, Boulot S, Le Cozler Y (2005) Seasonal variation of reproductive performance of the sow. Institut national de la recherche agronomique Production Animales 18, 101–110.

Ralston A, Rossant J (2005) Genetic regulation of stem cell origins in the mouse embryo. Clinical Genetics 68, 106–112.
Genetic regulation of stem cell origins in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzksVymsw%3D%3D&md5=b6e2d9e70a387bf6c60126cd4a0a9339CAS | 15996204PubMed |

Ralston A, Rossant J (2010) The genetics of induced pluripotency. Reproduction (Cambridge, England) 139, 35–44.
The genetics of induced pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWntA%3D%3D&md5=155318b5ac0556e75118a0a00307b676CAS |

Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001) Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biology of Reproduction 65, 229–239.
Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtbc%3D&md5=5f08754c428b216ba2bdca03f220ee61CAS | 11420244PubMed |

Rosell C, Navàs F, Romero S (2012) Reproduction of wild boar in a cropland and coastal wetland area: implications for management. Animal Biodiversity and Conservation 35, 209–217.

Sancho S, Vilagran I (2013) The boar ejaculate: sperm function and seminal plasma analyses. In ‘Boar reproduction’. (Eds S Bonet, I Casas, WV Holt, M Yeste) pp. 471–516. (Springer: Berlin, Heidelberg)

Schulte R, Ohl D, Sigman M, Smith G (2010) Sperm DNA damage in male infertility: etiologies, assays, and outcomes. Journal of Assisted Reproduction and Genetics 27, 3–12.
Sperm DNA damage in male infertility: etiologies, assays, and outcomes.Crossref | GoogleScholarGoogle Scholar | 20012685PubMed |

Setchell BP (2006) The effects of heat on the testes of mammals. Animal Reproduction 3, 81–91.

Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reproductive Biology and Endocrinology 7, 59
Epigenetic regulation in mammalian preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 19500360PubMed |

Silva BAN, Oliveira RFM, Donzele JL, Fernandes HC, Abreu MLT, Noblet J, Nunes CGV (2006) Effect of floor cooling on performance of lactating sows during summer. Livestock Science 105, 176–184.
Effect of floor cooling on performance of lactating sows during summer.Crossref | GoogleScholarGoogle Scholar |

Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737.
Nanog is the gateway to the pluripotent ground state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjs7rI&md5=8b259bbd6ebcc63fd992814c2c232253CAS |

Snelson H (2010) How many meals in a pig?- corrected. American Association of Swine Veterinarians. Available at https://www.aasv.org/news/story.php?id=4471 [posted 27 October 2010; verified 16 October 2015]

Spencer TE (2013) Early pregnancy: concepts, challenges, and potential solutions. Animal frontiers 3, 48–55.
Early pregnancy: concepts, challenges, and potential solutions.Crossref | GoogleScholarGoogle Scholar |

St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. Journal of Dairy Science 86, E52–E77.
Economic losses from heat stress by US livestock industries.Crossref | GoogleScholarGoogle Scholar |

Stefańczyk-Krzymowska S, Krzymowski T, Einer-Jensen N, Kamiński T, Kotwica J (1990) Local transfer of prostaglandin F2α from the uterine lumen into the venous and arterial blood and into the uterine, mesometrial and ovarian tissue on Day 18 of pregnancy in the pig. Animal Reproduction Science 23, 223–235.
Local transfer of prostaglandin F2α from the uterine lumen into the venous and arterial blood and into the uterine, mesometrial and ovarian tissue on Day 18 of pregnancy in the pig.Crossref | GoogleScholarGoogle Scholar |

Stone BA (1981) Thermal characteristics of the testis and epididymis of the boar. Journal of Reproduction and Fertility 63, 551–557.
Thermal characteristics of the testis and epididymis of the boar.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FlsFCruw%3D%3D&md5=b7afdbd939bf5e24457b6b419f3b9e04CAS | 7299758PubMed |

Stone BA (1982) Heat induced infertility of boars: the inter-relationship between depressed sperm output and fertility and an estimation of the critical air temperature above which sperm output is impaired. Animal Reproduction Science 4, 283–299.
Heat induced infertility of boars: the inter-relationship between depressed sperm output and fertility and an estimation of the critical air temperature above which sperm output is impaired.Crossref | GoogleScholarGoogle Scholar |

Stone BA, Seamark RF (1984) Effects of acute and chronic testicular hyperthermia on levels of testosterone and corticosteroids in plasma of boars. Animal Reproduction Science 7, 391–403.
Effects of acute and chronic testicular hyperthermia on levels of testosterone and corticosteroids in plasma of boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvVChtL4%3D&md5=0cda65494b96d43d63cab3188590719cCAS |

Suriyasomboon A, Lundeheim N, Kunavongkrit A, Einarsson S (2004) Effect of temperature and humidity on sperm production in Duroc boars under different housing systems in Thailand. Livestock Production Science 89, 19–31.
Effect of temperature and humidity on sperm production in Duroc boars under different housing systems in Thailand.Crossref | GoogleScholarGoogle Scholar |

Suriyasomboon A, Lundeheim N, Kunavongkrit A, Einarsson S (2006) Effect of temperature and humidity on reproductive performance of crossbred sows in Thailand. Theriogenology 65, 606–628.
Effect of temperature and humidity on reproductive performance of crossbred sows in Thailand.Crossref | GoogleScholarGoogle Scholar | 16009413PubMed |

Sutovsky P (2015) New approaches to boar semen evaluation, processing and improvement. Reproduction in Domestic Animals 50, 11–19.
New approaches to boar semen evaluation, processing and improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1ajsLnI&md5=bee92429110811795210c0b91abf36a9CAS | 26174914PubMed |

Tramontano F, Malanga M, Farina B, Jones R, Quesada P (2000) Heat stress reduces poly(ADPR)polymerase expression in rat testis. Molecular Human Reproduction 6, 575–581.
Heat stress reduces poly(ADPR)polymerase expression in rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVeqs74%3D&md5=dc29293e8eddad019614d6a22cfe5bd9CAS | 10871642PubMed |

Tsakmakidis IA, Lymberopoulos AG, Khalifa TAA (2010) Relationship between sperm quality traits and field-fertility of porcine semen. Journal of Veterinary Science (Suwon-si, Korea) 11, 151–154.
Relationship between sperm quality traits and field-fertility of porcine semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czisFyqtA%3D%3D&md5=0696bca369381df34797672e256b82a2CAS |

van Zelst SJ, Zupp JL, Hayman DL, Setchell BP (1995) X-Y chromosome dissociation in mice and rats exposed to increased testicular or environmental temperatures. Reproduction, Fertility and Development 7, 1117–1121.
X-Y chromosome dissociation in mice and rats exposed to increased testicular or environmental temperatures.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283kvFeisA%3D%3D&md5=f9f8d36aff2df3c6969a5bfc3099d0e0CAS |

Vega RS, Garcia BR, Agbisit E, Calud AT, Villar EC (2010) Performance of commercial piggery farms affected by the third quarter reproduction syndrome. Philippine Journal of Veterinary and Animal Science 36, 63–72.

Vernet P, Rigaudiere N, Ghyselinck N, Dufaure JP, Drevet JR (1996) In vitro expression of a mouse tissue specific glutathione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage. Biochemistry and Cell Biology 74, 125–131.
In vitro expression of a mouse tissue specific glutathione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKmtrk%3D&md5=b50d71fc0f71ced51717442a23ff6f2eCAS | 9035686PubMed |

Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Molecular Human Reproduction 16, 30–36.
Function of sperm chromatin structural elements in fertilization and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOhtrrI&md5=40b2954f12d5a66e78a7384744e96caaCAS | 19748904PubMed |

Wettemann RP, Bazer FW (1985) Influence of environmental temperature on prolificacy of pigs. Journal of Reproduction and Fertility. Supplement 33, 199–208.

Wettemann RP, Desjardins C (1979) Testicular function in boars exposed to elevated ambient temperature. Biology of Reproduction 20, 235–241.
Testicular function in boars exposed to elevated ambient temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitVWntL4%3D&md5=790a9bdc45e0875d67be3bd60fd843e6CAS | 454734PubMed |

Wettemann RP, Wells ME, Omtvedt IT, Pope CE, Turman EJ (1976) Influence of elevated ambient temperature on reproductive performance of boars. Journal of Animal Science 42, 664–669.

Wettemann RP, Wells ME, Johnson RK (1979) Reproductive characteristics of boars during and after exposure to increased ambient temperature. Journal of Animal Science 49, 1501–1505.

Wolf XA, Serup P, Hyttel P (2011) Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos. Developmental Dynamics 240, 204–210.
Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 21089074PubMed |

World Health Organization (2003) Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, Geneva, 28 January – 1 February 2002. Geneva, Switzerland. Available at http://www.fao.org/docrep/005/ac911e/ac911e05.htm [Verified 8 February 2016]

Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. The Journal of Biological Chemistry 278, 29471–29477.
The structural organization of sperm chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFOgurs%3D&md5=26a5360978115a561e9970d032987398CAS | 12775710PubMed |

Yamauchi Y, Shaman JA, Ward WS (2011) Non-genetic contributions of the sperm nucleus to embryonic development. Asian Journal of Andrology 13, 31–35.
Non-genetic contributions of the sperm nucleus to embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejsA%3D%3D&md5=29c777d52958964b88adf16ff34fdc02CAS | 20953203PubMed |

Zasiadczyk L, Fraser L, Kordan W, Wasilewska K (2015) Individual and seasonal variations in the quality of fractionated boar ejaculates. Theriogenology 83, 1287–1303.
Individual and seasonal variations in the quality of fractionated boar ejaculates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MrpsFKmtg%3D%3D&md5=4cd301f801f3be956b6e18e664d60e02CAS | 25724288PubMed |

Zavy MT, Bazer FW, Thatcher W, Wilcox C (1980) A study of prostaglandin F2α as the luteolysin in swine: V comparison of prostaglandin F, progestins, estrone and estradiol in uterine flushings from pregnant and nonpregnant gilts. Prostaglandins 20, 837–851.
A study of prostaglandin F2α as the luteolysin in swine: V comparison of prostaglandin F, progestins, estrone and estradiol in uterine flushings from pregnant and nonpregnant gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXivVWqsQ%3D%3D&md5=e5e6a50b9d3ae36f65998009185ddddfCAS | 7465869PubMed |

Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nature Reviews. Genetics 10, 467–477.
Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWgtLc%3D&md5=242a0dde976101a38f86d75239d6f0f7CAS | 19536196PubMed |