Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
PERSPECTIVES ON ANIMAL BIOSCIENCES (Open Access)

Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity

R. A. Leng A
+ Author Affiliations
- Author Affiliations

A Emeritus Professor, University of New England, Armidale, NSW 2351, Australia. Email: rleng@ozemail.com.au

Animal Production Science 58(7) 1175-1191 https://doi.org/10.1071/AN15710
Submitted: 8 October 2015  Accepted: 31 January 2018   Published: 4 May 2018

Journal compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

The present essay aims to resolve the question as to why macropod marsupials (e.g. kangaroos and wallabies, hereinafter termed ‘macropods) and horses produce much less methane (CH4) than do ruminants when digesting the same feed. In herbivores, gases produced during fermentation of fibrous feeds do not pose a major problem in regions of the gut that have mechanisms to eliminate them (e.g. eructation in the rumen and flatus in the lower bowel). In contrast, gas pressure build-up in the tubiform forestomach of macropods or in the enlarged tubiform caecum of equids would be potentially damaging. It is hypothesised that, to prevent this problem, evolution has favoured development of controls over gut microbiota that enable enteric gas production (H2 and CH4) to be differently regulated in the forestomach of macropods and the caecum of all three species, from the forestomach of ruminants. The hypothesised regulation depends on interactions between their gut anatomy and host-tissue immune responses that have evolved to modify the species composition of their gut microbiota which, importantly, are mainly in biofilms. Obligatory H2 production during forage fermentation is, thus, captured in CH4 in the ruminant where ruminal gases are readily released by eructation, or in acetate in the macropod forestomach and equid caecum–colon where a build-up in gas pressure could potentially damage these organs. So as to maintain appropriate gut microbiota in different species, it is hypothesised that blind sacs at the cranial end of the haustral anatomy of the macropod forestomach and the equid caecum are sites of release of protobiofilm particles that develop in close association with the mucosal lymphoid tissues. These tissues release immune secretions such as antimicrobial peptides, immunoglobulins, innate lymphoid cells and mucin that eliminate or suppress methanogenic Archaea and support the growth of acetogenic microbiota. The present review draws on microbiological studies of the mammalian gut as well as other microbial environments. Hypotheses are advanced to account for published findings relating to the gut anatomy of herbivores and humans, the kinetics of digesta in ruminants, macropods and equids, and also the composition of biofilm microbiota in the human gut as well as aquatic and other environments where the microbiota exist in biofilms.

Additional keywords: acetogenesis, blind sacs, haustra, innate lymphoid cells, mucin.


References

Annison EF, Bryden WL (1998) Perspective on ruminant nutrition and metabolism: I. Metabolism in the rumen. Nutrition Research Reviews 11, 173–178.
Perspective on ruminant nutrition and metabolism: I. Metabolism in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12nurc%3D&md5=c6bcc71a59e1e00f8e9aa6a3bb69dee7CAS |

Baker S, Brown GD, Calaby JH (1963) Food regurgitation in the macropodiae. Australian Journal of Science 25, 430–432.

Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.
Dendritic cells and the control of immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFWrsr8%3D&md5=76a30260383885526a925b341bdd907cCAS |

Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA (2014) The intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One 9, e99411
The intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells.Crossref | GoogleScholarGoogle Scholar |

Bar-Zeev E, Berman-Frank I, Girshevit O, Berman T (2012) Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles. Proceedings of the National Academy of Sciences of the United States of America 109, 9119–9124.
Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovF2gu70%3D&md5=70459c9dd461286a033d5a409b10267aCAS |

Bath C, Morrison M, Ross EM, Hayes BJ, Cocks BG (2013) The symbiotic rumen microbiome and cattle performance: a brief review. Animal Production Science 53, 876–881.

Bevins CL, Salzman NH (2011) The potter’s wheel: the host’s role in sculpting its microbiota. Cellular and Molecular Life Sciences 68, 3675–3685.
The potter’s wheel: the host’s role in sculpting its microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gsr%2FN&md5=9f8d9c0ab6ddd05470317e33c5d9ce73CAS |

Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, Duchaine C (2014) Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One 9, e87734
Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases.Crossref | GoogleScholarGoogle Scholar |

Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W (2003) Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109, 580–587.
Human secretory immunoglobulin A may contribute to biofilm formation in the gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Sisbw%3D&md5=b8b5b486c82cde8e72923f3e1509d066CAS |

Bollinger RB, Everett M, Wahl S, Lee YH, Orndorff PE, Parker W (2006) Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Molecular Immunology 43, 378–387.
Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cmu7vF&md5=3958fbbfb670df1a591f3688dfe5f690CAS |

Bollinger RR, Barbas AS, Bush EL, Lin SS, Parkera W (2007) Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. Journal of Theoretical Biology 249, 826–831.
Biofilms in the large bowel suggest an apparent function of the human vermiform appendix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGhtrfF&md5=3c73e3773b8c37fc373ebd125150c8baCAS |

Brookman JL, Ozkose E, Rogers S, Trinci PJ, Theodorou MK (2000) Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiology Ecology 31, 261–267.
Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslamurg%3D&md5=8da44cf6cb28fbfb085ce1f55f7441b5CAS |

Brugman S, Nieuwenhuis EE (2010) Mucosal control of the intestinal microbial community. Journal of Molecular Medicine 88, 881–888.
Mucosal control of the intestinal microbial community.Crossref | GoogleScholarGoogle Scholar |

Cheng KJ, McAllister TA, Costerton JW (1995) Biofilm of the ruminant digestive tract. In ‘Microbial biofilms’. (Eds H Lappin-Scott, JM Costerton) pp. 221–232. (Cambridge University Press: Cambridge, UK)

Clarke RTJ, Reid CSW (1974) Foamy bloat of cattle. A review. Journal of Dairy Science 57, 753–785.
Foamy bloat of cattle. A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltFyrt7g%3D&md5=857434066401335412478b043c2ccc9cCAS |

Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60, 609–640.

Conrad R, Aragno M, Seiler W (1983) The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiology Letters 18, 207–210.
The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlGrsbs%3D&md5=4bc62ed617f71dd7567d11f2c62c8b3bCAS |

Cord-Ruwisch R, Seitz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology 149, 350–357.
The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXht1yhurc%3D&md5=090fb3a64848b975bbdaceca4fda6322CAS |

Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M (2000) Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 47, 589–594.
Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVCru7s%3D&md5=21357e906e12cac87d39806cce266245CAS |

Costerton JW (2007) The biofilm primer. In ‘Springer series on biofilms’. (Ed. C Eckey) p. 165. (Springer-Verlag: Berlin)

Craig WM, Broderick GA, Ricker DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. The Journal of Nutrition 117, 56–62.
Quantitation of microorganisms associated with the particulate phase of ruminal ingesta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhslGju7o%3D&md5=dd5d5d230fd8f80713019bdb01354afeCAS |

Daly KA, Digby MR, Lefevre C, Nicholas KR, Deane EM, Williamson P (2008) Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii). Comparative Biochemistry and Physiology 149, 524–533.
Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar |

de Mulder T, Goossens K, Peiren N, Vandaele L, Haegeman A, De Tender C, Ruttink T, de Wiele TV, De Campeneere S (2016) Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural. FEMS Microbiology Ecology 93, fiw251
Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural.Crossref | GoogleScholarGoogle Scholar |

De Rosa M, Gambacorta A, Gliozzi A (1986) Structure, biosynthesis and physicochemical properties of Archaea bacterial lipids. Microbiological Reviews 50, 70–80.

Dellow DW (1979) Physiology of digestion in the macropodine marsupials. PhD Thesis, University of New England, Armidale, NSW.

Dellow DW (1982) Studies on the nutrition of macropodine marsupials III. The flow of digesta through the stomach and intestine of macropodines and sheep. Australian Journal of Zoology 30, 751–765.
Studies on the nutrition of macropodine marsupials III. The flow of digesta through the stomach and intestine of macropodines and sheep.Crossref | GoogleScholarGoogle Scholar |

Dellow DW, Hume ID, Clarke RTJ, Bauchop T (1988) Microbial activity in the forestomach of free-living macropodid marsupials: comparisons with laboratory studies. Australian Journal of Zoology 36, 383–395.
Microbial activity in the forestomach of free-living macropodid marsupials: comparisons with laboratory studies.Crossref | GoogleScholarGoogle Scholar |

Dishaw LJ, Cannon JP, Litman GW, Parker W (2014) Immune-directed support of rich microbial communities in the gut has ancient roots. Developmental and Comparative Immunology 47, 36–51.
Immune-directed support of rich microbial communities in the gut has ancient roots.Crossref | GoogleScholarGoogle Scholar |

Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosa Immunology – Nature 3, 450–460.
A new vision of immunity: homeostasis of the superorganism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCntrrM&md5=ee796badcba461d307584888c4bbb2c8CAS |

Eberl G, Colonna M, Di-Santo MJP, McKenzie ANJ (2015) Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566
Innate lymphoid cells: a new paradigm in immunology.Crossref | GoogleScholarGoogle Scholar |

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308, 1635–1638.
Diversity of the human intestinal microbial flora.Crossref | GoogleScholarGoogle Scholar |

Edwards JE, Huws SA, Ki EJ, Lee MRF, Kingston-Smith AH, Scollan ND (2008) Advances in microbial ecosystem concepts and their consequences for ruminant agriculture. Animal 2, 653–660.
Advances in microbial ecosystem concepts and their consequences for ruminant agriculture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptVykuw%3D%3D&md5=2847037b89bf4eeb6f94854c9b544378CAS |

Ehrlein HJ, Reich H, Schwinger M (1983) Colonic motility and transit of digesta during hard and soft faeces formation in rabbits. The Journal of Physiology 338, 75–86.
Colonic motility and transit of digesta during hard and soft faeces formation in rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3mvVegsA%3D%3D&md5=9aff7f8577d8967c16a6421797e7a791CAS |

Everett ML, Palestrant D, Miller SE, Bollinger RB, Parker W (2004) Immune exclusion and immune inclusion: a new model of host–bacterial interactions in the gut. Clinical and Applied Immunology Reviews 4, 321–332.
Immune exclusion and immune inclusion: a new model of host–bacterial interactions in the gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVSitrk%3D&md5=19773999e0107b6371e52702d0b4f307CAS |

Fauque G, Peck HD, Moura JJG, Huynh BH, Berlier Y, Der Vartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I, LeGall J (1988) The three classes of hydrogenases from sulfate‐reducing bacteria of the genus Desulfovibrio. FEMS Microbiology Reviews 54, 299–344.
The three classes of hydrogenases from sulfate‐reducing bacteria of the genus Desulfovibrio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlSru7g%3D&md5=5194fdd76639a507417786906e1f66d3CAS |

Franz R, Soliva CR, Kreuzer M, Steuer P, Hummel J, Clauss M (2010) Methane production in relation to body mass of ruminants and equids. Evolutionary Ecology Research 12, 727–738.

Ganz T (2003) The role of AMPs in innate immunity. Integrative and Comparative Biology 43, 300–304.
The role of AMPs in innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslantbk%3D&md5=f803e9eaffc8c26ad90fa2aa0633606dCAS |

Gibson GR, Macfarlane GT, Cummings JH (1993) Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34, 437–439.
Sulphate reducing bacteria and hydrogen metabolism in the human large intestine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVGqu7s%3D&md5=45c080f7e8e0616046c6f4be984a4046CAS |

Godwin S, Kang A, Gulino LM, Manefield M, Gutierrez-Zamora ML, Kienzle M, Ouwerkerk D, Dawson K, Klieve AV (2014) Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. The ISME Journal: Multidisciplinary Journal of Microbial Ecology 8, 1855–1865.
Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWksr7E&md5=bbf1f96045492abcfecf1f49a241f32eCAS |

Gookin JL, Foster DM, Harvey AM (2011) ‘An animated model of reticulorumen motility.’ 3rd edn. North Carolina State University. Available at www.ncsu.edu/project/cvm_gookin/rumen_motility.swf [Verified July 2017]

Gordon GLR, Phillips MW (1998) The role of anaerobic gut fungi in ruminants. Nutrition Research Reviews 11, 133–168.
The role of anaerobic gut fungi in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FjsF2rsQ%3D%3D&md5=84506b4b3ac8ba1d6be79cfdaa0605faCAS |

Ha CW, Lam YY, Holmes AJ (2014) Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology 20, 16498–16517.
Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWgsrnJ&md5=20d3df7922e746856b24823fc1bb4252CAS |

Hackstein JHP, van Alen TA (2010) Methanogens in the gastro intestinal tract of animals. In ‘Endosymbionic methanogenic Archaea’. Microbiological monographs 19, pp. 115–125. (Springer-Verlag: Berlin)

Hart DN, McKenzie JL (1990) Interstitial dendritic cells. International Reviews of Immunology 6, 127–138.
Interstitial dendritic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3htVeqsA%3D%3D&md5=0b4e7eed46efac0de3fc9915a8ca320eCAS |

Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ (2013) A new role for mucins in immunity: insights from gastrointestinal nematode infection. The International Journal of Biochemistry & Cell Biology 45, 364–374.
A new role for mucins in immunity: insights from gastrointestinal nematode infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosF2qtw%3D%3D&md5=11fdc01af39bd6dd7bcaf93b16d68922CAS |

Hattori S, Galushko HA, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate oxidizing bacterium Thermacetogenium phaeum. Journal of Bacteriology 187, 3471–3476.
Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate oxidizing bacterium Thermacetogenium phaeum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1CksLo%3D&md5=99331dba1455f0c329f3f0a16e45de6cCAS |

Hoehler TM, Alberty DB, Alperin MJ, Bebout BM, Martens CS, des Marais DJ (2002) Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie van Leeuwenhoek 81, 575–585.
Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Sgtr8%3D&md5=2c0b4121c8358d35a81d7a47c3c72d69CAS |

Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM (2013) Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science 91, 5045–5069.
Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKktrrL&md5=0409274c066031647c58b4a732d79b18CAS |

Hume ID (1999) ‘Marsupial nutrition.’ (Cambridge University Press: Cambridge, UK)

Hume ID (2002) Digestive strategies of mammals. Dong Wu Xue Bao 48, 1–19.

Hungate RE (1966) ‘The rumen and its microbes.’ (Academic Press: New York) Available at http://www.sciencedirect.com/science/book/9781483233086 [Verified July 2017]

Huws SA, Mayorga OL, Theodorou MK, Onime LA, Kim EJ, Cookson AH, Newbold CJ, Kingston-Smith AH (2013) Successional colonization of perennial ryegrass by rumen bacteria. Letters in Applied Microbiology 56, 186–196.
Successional colonization of perennial ryegrass by rumen bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVakur8%3D&md5=bca1e5dfc91c0870dc77fcec8a2e3caeCAS |

Kandler O, König H (1998) Cell wall polymers in Archaea (Archaea bacteria). Cellular and Molecular Life Sciences 54, 305–308.
Cell wall polymers in Archaea (Archaea bacteria).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1emsbo%3D&md5=66c2c4af26eedebab44bca72eff1a139CAS |

Kempton TJ, Murray RM, Leng RA (1976) Methane production and digestibility measurements in grey macropods and sheep. Australian Journal of Biological Sciences 29, 209–214.
Methane production and digestibility measurements in grey macropods and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvFaltbk%3D&md5=373b4db28eafa17999062d025f3fe1eaCAS |

Kim JJ, Khan WI (2013) Goblet cells and mucins: role in innate defense in enteric infections. pathogens 2, 55–70.
Goblet cells and mucins: role in innate defense in enteric infections.Crossref | GoogleScholarGoogle Scholar |

Klieve AV, Ouwekerk D, Maquire AJ (2012) Archaea in the foregut of macropod marsupials: PCR and amplicon sequence-based observations. Journal of Applied Microbiology 113, 1065–1075.
Archaea in the foregut of macropod marsupials: PCR and amplicon sequence-based observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWisrvO&md5=6f978d074c22a88445188759e66162a4CAS |

Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nature Reviews. Microbiology 10, 323–335.
How glycan metabolism shapes the human gut microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVSjtro%3D&md5=0bec5be517462ce7110f9856816c0f46CAS |

Krebs GL (1987) The rumen ecosystem: kinetics of microbial pools and effects on microbial protein yield. PhD Thesis, University of New England, Armidale, NSW.

Langer P (1984) Comparative anatomy of the stomach in mammalian herbivores. Quarterly Journal of Experimental Physiology 69, 615–625.
Comparative anatomy of the stomach in mammalian herbivores.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3pvV2isQ%3D%3D&md5=8b206a678df95cd656e18813cc0a5c59CAS |

Langer P, Dellow DW, Hume ID (1980) Stomach structure and function in three species of Macropodine Marsupials. Australian Journal of Zoology 28, 1–18.
Stomach structure and function in three species of Macropodine Marsupials.Crossref | GoogleScholarGoogle Scholar |

Lee C, Beauchemin KA (2014) A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Canadian Journal of Animal Science 94, 557–570.
A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFejurzO&md5=5a2fe135710af33d5ae8b72cebb4609dCAS |

Leng RA (2011) The rumen: a fermentation vat or a series of organized structured microbial consortia: implications for the mitigation of enteric methane production by feed additives. Livestock Research for Rural Development 23, 258

Leng RA (2014) Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Animal Production Science 54, 519–543.
Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ehtrw%3D&md5=a02509f02e08e1398d4e48b68d560235CAS |

Leng RA, Leonard GJ (1965) Loss of methyl tritium from [3H] acetate in rumen fluid. Nature 207, 760–761.
Loss of methyl tritium from [3H] acetate in rumen fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXks1Gmsr4%3D&md5=f27d0625f7c77d2497bf93f1173f9f94CAS |

Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews. Microbiology 6, 776–788.
Worlds within worlds: evolution of the vertebrate gut microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWitLrN&md5=7ec56dec6b0b2b412f3d05f25fd11702CAS |

Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiological Reviews 82, 97–130.
Dendritic cells: immune regulators in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFSisA%3D%3D&md5=ff0d1f0a67703eb1fd68d743f0978842CAS |

Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Applied and Environmental Microbiology 49, 1530–1531.

Lovley DR, Godwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta 52, 2993–3003.
Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXot1SltQ%3D%3D&md5=dee53cc3bc7033c1cbcf32064be503e4CAS |

Madsen J, Bertelsen MF (2012) Methane production by red-necked wallabies (Macropus rufogriseus). Journal of Animal Science 90, 1364–1370.
Methane production by red-necked wallabies (Macropus rufogriseus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFanu7w%3D&md5=83c3335f31abba1ddcc9266c21637651CAS |

Matzinger P (1994) Tolerance, danger, and the extended family. Annual Review of Immunology 12, 991–1045.
Tolerance, danger, and the extended family.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3otVOqsA%3D%3D&md5=63953959ba67763d7cc7c94dad0ebaedCAS |

Matzinger P (2012) The evolution of the danger theory. Expert Review of Clinical Immunology 8, 311–317.
The evolution of the danger theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1yqsrc%3D&md5=797cca84f3477bc59e924624d4b869b4CAS |

Mayorga OL, Huws SA, Kim EJ, Kingston-Smith AH, Newbold CJ, Theodorou MK (2007) Biofilm formation by rumen microbes on fresh perennial ryegrasss under in vitro anaerobic conditions. In ‘UK Molecular Microbial Ecology Group’, 13th meeting, 16–17 July 2007, University of Liverpool, UK.

McAllister TA, Cheng KJ (1996) Microbial strategies in the ruminal digestion of cereal grains. Animal Feed Science and Technology 62, 29–36.
Microbial strategies in the ruminal digestion of cereal grains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xns1Sht7o%3D&md5=a1534d2d6c254e30f77fb434803c7f1dCAS |

McAllister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. Journal of Animal Science 72, 3004–3018.
Microbial attachment and feed digestion in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvFGjtrs%3D&md5=80e7bffb6509b2a74952d8faa390e4ddCAS |

McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology 20, 623–632.
Syntrophy in anaerobic global carbon cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ks7%2FJ&md5=d37d2f9fbe5e32add0e8e5b052434242CAS |

Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, Nonaka I, Asanuma N, Denman SE, McSweeney CS (2012) Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition 108, 482–491.
Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFClu7fK&md5=68c3e4af643ee05fce05d689165c25e2CAS |

Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiology Letters 117, 249–256.
Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1Kmu7s%3D&md5=36b28b1f70dc44cfa6ac50084dd45848CAS |

Munn AJ, Tomlinson S, Savage T, Clauss M (2012) Retention of different-sized particles and derived gut fill estimate in tammar wallabies (Macropus eugenii): physiological and methodological considerations. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 161, 243–249.
Retention of different-sized particles and derived gut fill estimate in tammar wallabies (Macropus eugenii): physiological and methodological considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CqsbbO&md5=7d379018e0a20c9f01635b2c20a95a19CAS |

Ostaff MJ, Stange EF, Wehkamp J (2013) Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine 5, 1465–1483.
Antimicrobial peptides and gut microbiota in homeostasis and pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOgsrjE&md5=37d025a2823fe1d35b4270d0925a1f6cCAS |

Ouwerkerk D, Maguire AJ, McMillen L, Klieve AV (2009) Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) macropods. Animal Production Science 49, 1043–1051.
Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) macropods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gmtb%2FK&md5=c6eca3f0a823802b403c3ba19ea6fd2aCAS |

Peel E, Jones E, Belov K, Cheng Y (2013) Protection in the pouch: AMPs in marsupials and monotremes). In ‘Microbial pathogens and strategies for combating them’. (Ed. A Méndez-Vilas) pp. 1247–1256. Formatex. Available at http://www.formatex.info/microbiology4/vol2/1247-1256.pdf [Verified July 2017]

Pinder RS, Patterson JA (2012) Glucose and hydrogen utilization by an acetogenic bacterium isolated from ruminal contents. Agricultural Food and Analytical Bacteriology 2, 253–274.

Pope PB, Totsika M, Aguirre de Carcer D, Schembri MA, Morrison M (2011) Muramidases found in the foregut microbiome of the Tammar wallaby can direct cell aggregation and biofilm formation. The ISME Journal 5, 341–350.
Muramidases found in the foregut microbiome of the Tammar wallaby can direct cell aggregation and biofilm formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVGjtQ%3D%3D&md5=15e6ca5d7b0dd8c8995ccc0798bd16d8CAS |

Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Frontiers in Immunology 3, 287
The danger theory: 20 years later.Crossref | GoogleScholarGoogle Scholar |

Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta 1784, 1873–1898.
Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaqtb7O&md5=f00168a34586ce39f2c7157d1786f241CAS |

Richardson KC (1980) The structure and radiographic anatomy of the alimentary tract of the tammar wallaby, Macropuseugenii (Marsupialia). I. The stomach. Australian Journal of Zoology 28, 367–379.
The structure and radiographic anatomy of the alimentary tract of the tammar wallaby, Macropuseugenii (Marsupialia). I. The stomach.Crossref | GoogleScholarGoogle Scholar |

Rodríguez CA, González J, Alvir MR, Redondo R, Cajarville C (2003) Effects of feed intake on composition of sheep rumen contents and their microbial population size. British Journal of Nutrition 89, 97–103.
Effects of feed intake on composition of sheep rumen contents and their microbial population size.Crossref | GoogleScholarGoogle Scholar |

Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunology 4, 8–14.
To be or not to be a pathogen: that is the mucosally relevant question.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ejtb3E&md5=b49f556681c7fe92db8ff3322294ba80CAS |

Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61, 262–280.

Schluter J, Foster KR (2012) The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biology 10, e1001424
The evolution of mutualism in gut microbiota via host epithelial selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWnu73L&md5=242c0c3a18857686843bc13c3b7f04b7CAS |

Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469, 419–423.
Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKksg%3D%3D&md5=0c67011ee3b175074bfebef6fbcc26a4CAS |

Shoeib MB, Hassanin A, Elnasharty M (2015) Morphological and morphometric characteristics of gastric mucosa in western grey macropods (Macropus fuliginosus). Journal of Advanced Veterinary and Animal Research 2, 40–48.
Morphological and morphometric characteristics of gastric mucosa in western grey macropods (Macropus fuliginosus).Crossref | GoogleScholarGoogle Scholar |

Smith HF, Fisher RE, Everett MI, Thomas AD, Bollinger RR, Parker W (2009) Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. Journal of Evolutionary Biology 22, 1984–1999.
Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MnjslehtA%3D%3D&md5=4ab8258b9da2b489accfe3d9ac006a7aCAS |

Sommer F, Bäckhed F (2013) The gut microbiota-masters of host development and physiology. Nature Reviews. Microbiology 11, 227–238.
The gut microbiota-masters of host development and physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOrtbY%3D&md5=4ca3a813a7d00ae8ece299c501b5a9a7CAS |

Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D (2011) CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134.
CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wlu7w%3D&md5=a285d6e14f1b2fb00adbc235765059b2CAS |

Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annual Review of Microbiology 56, 187–209.
Biofilms as complex differentiated communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Gis7o%3D&md5=a7aec4230331d8666335c204c6023ee5CAS |

Tyndale-Biscoe H (2005) ‘Life of marsupials.’ (CSIRO Publishing: Melbourne)

von Engelhardt W, Wolter S, Lawrenz H, Hemsley JA (1978) Production of methane in two non-ruminant herbivores. Comparative Biochemistry and Physiology. Part A. Physiology 60, 309–311.
Production of methane in two non-ruminant herbivores.Crossref | GoogleScholarGoogle Scholar |

Walker JA, Barlow JL, McKenzie ANJ (2013) Innate lymphoid cells: how did we miss them? Nature Reviews. Immunology 13, 75–87.
Innate lymphoid cells: how did we miss them?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslGjsQ%3D%3D&md5=1bb0f86eead58b22ea7ecbf302a2faa0CAS |

Wang ZW, Chen S (2009) Potential of biofilm-based biofuel production. Applied and Environmental Microbiology 83, 1–18.

Wang J, Wong ESW, Whitely JC, Li J, Stringer JM, Short KR, Renfree MB, Belov K, Cocks B (2011) Ancient AMPS kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6, e24030
Ancient AMPS kill antibiotic-resistant pathogens: Australian mammals provide new options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wrt77N&md5=a5100031472b7329b9413b2efd48aee5CAS |

Weimer PJ, Russell JB, Muck RE (2009) Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresource Technology 100, 5323–5331.
Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGgsrY%3D&md5=712091419e50d293fcaaf57d987365cbCAS |

Williams AG (2007) Rumen holotrich ciliate protozoa. Microbiological Reviews 50, 25–49.

Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Archives of Microbiology 138, 263–272.
Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVOiu70%3D&md5=6d6eadee168d6f284ab7f37cafe28753CAS |