Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

Functionality and genomics of selenium and vitamin E supplementation in ruminants

S. S. Chauhan A B , F. Liu A , B. J. Leury A , J. J. Cottrell A , P. Celi A C and F. R. Dunshea A D
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Directorate of Animal Husbandry, Government of Himachal Pradesh, Shimla 171 005, India.

C DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA.

D Corresponding author. Email: fdunshea@unimelb.edu.au

Animal Production Science 56(8) 1285-1298 https://doi.org/10.1071/AN15263
Submitted: 29 May 2015  Accepted: 12 November 2015   Published: 9 March 2016

Abstract

Selenium (Se) and vitamin E are essential micronutrients for animal health and production. The major function of both Se and vitamin E is to prevent the oxidative damage of biological membranes and they can influence growth, reproduction, immune function, health, and product quality in ruminants. Both Se and vitamin E are important for maintaining low cellular and systemic concentrations of reactive oxygen species and lipid hydroperoxides, to ensure optimum cellular function. Discovery of various selenoproteins and vitamin E-responsive genes has contributed significantly to improving our understanding about multiple functions of Se and vitamin E. There is evidence that these functions extend beyond the classical antioxidant properties to immunomodulation and intracellular cell signalling and gene regulation. Research in recent years has also shown that supranutritional supplementation of Se and vitamin E is required to improve the performance of ruminants under certain stressful conditions such as heat stress and during transition period. Considering the growing awareness among consumers of the benefits of antioxidant-rich food, there is a great opportunity for the livestock industries to focus on producing antioxidant-enriched milk and meat products or functional foods. The present review focuses on the recent developments in understanding multiple functions of Se and vitamin E at the cellular and molecular level and the effects of supranutritional supplementation on ruminant performance. In addition, the paper also articulates the potential opportunities to produce functional foods enriched with antioxidants, and underlines the need for optimum supplementation of these micronutrients for efficient ruminant production.

Additional keywords: oxidative stress, selenoproteins.


References

Aitken SL, Karcher EL, Rezamand P, Gandy JC, VandeHaar MJ, Capuco AV, Sordillo LM (2009) Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period. Journal of Dairy Science 92, 589–598.
Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kis78%3D&md5=6643d5718ac3bba387e8db11870ade10CAS | 19164669PubMed |

Aitken SL, Corl CL, Sordillo LM (2011) Immunopathology of mastitis: insights into disease recognition and resolution. Journal of Mammary Gland Biology and Neoplasia 16, 291–304.
Immunopathology of mastitis: insights into disease recognition and resolution.Crossref | GoogleScholarGoogle Scholar | 21938490PubMed |

Alhidary IA, Shini S, Al Jassim RAM, Gaughan JB (2012) Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load. Journal of Animal Science 90, 2988–2994.
Effect of various doses of injected selenium on performance and physiological responses of sheep to heat load.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKku7vK&md5=a59a2be025cd74739a9fff52e316bcc0CAS | 22585786PubMed |

Allison RD, Laven RA (2000) Effect of vitamin E supplementation on the health and fertility of dairy cows: a review. The Veterinary Record 147, 703–708.

Arthur JR, Beckett GJ (1994) New metabolic roles for selenium. Proceedings of the Nutrition Society 53, 615–624.

Awadeh FT, Kincaid RL, Johnson KA (1998) Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. Journal of Animal Science 76, 1204–1215.

Azzi A, Ricciarelli R, Zingg JM (2002) Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Letters 519, 8–10.
Non-antioxidant molecular functions of alpha-tocopherol (vitamin E).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVSntLo%3D&md5=31c52a90749e0ee2b6eecc830d295ae7CAS | 12023009PubMed |

Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L, Visarius T, Zingg JM (2004) Vitamin E mediates cell signaling and regulation of gene expression. In ‘Vitamin E and health. Vol. 1031’. (Eds F Kelly, M Meydani, L Packer) pp. 86–95. (New York Academy of Sciences: New York, NY)

Baldi A, Savoini G, Pinotti L, Monfardini E, Cheli F, Orto VD (2000) Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. Journal of Veterinary Medicine Series A 47, 599–608.

Barella L, Muller PY, Schlachter M, Hunziker W, Stocklin E, Spitzer V, Meier N, de Pascual-Teresa S, Minihane AM, Rimbach G (2004) Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1689, 66–74.
Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktF2rtr0%3D&md5=7ba925b85111dd0a9593ac9b6a2b71ecCAS |

Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. Journal of Endocrinology 184, 455–465.

Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annual Review of Nutrition 21, 453–473.
Mammalian selenium-containing proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFyrsr8%3D&md5=49cf7ab6d52b8eb53801ec733cd4bd92CAS | 11375445PubMed |

Bekhit AEA, Hopkins DL, Fahri FT, Ponnampalam EN (2013) Oxidative processes in muscle systems and fresh meat: sources, markers, and remedies. Comprehensive Reviews in Food Science and Food Safety 12, 565–597.
Oxidative processes in muscle systems and fresh meat: sources, markers, and remedies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslejtLrI&md5=0a230d81faff277259ea194681e067c2CAS |

Bernabucci U, Ronchi B, Lacetera N, Nardone A (2002) Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of Dairy Science 85, 2173–2179.

Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4, 1167–1183.
Metabolic and hormonal acclimation to heat stress in domesticated ruminants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFyrtw%3D%3D&md5=26ee8fb1c5916e3b64e0e395aadffc23CAS | 22444615PubMed |

Bourne N, Laven R, Wathes DC, Martinez T, McGowan M (2007) A meta-analysis of the effects of vitamin E supplementation on the incidence of retained foetal membranes in dairy cows. Theriogenology 67, 494–501.
A meta-analysis of the effects of vitamin E supplementation on the incidence of retained foetal membranes in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyktw%3D%3D&md5=25139db9d560183dc774a03ac05ec960CAS | 17007917PubMed |

Bourne N, Wathes DC, Lawrence KE, McGowan M, Laven RA (2008) The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Veterinary Journal (London, England) 177, 381–387.
The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOlt7c%3D&md5=3d173ee2ecd21d1836dba6ad53e524b8CAS |

Burvenich C, Monfardini E, Mehrzad J, Capuco AV, Paape MJ (2004) Role of neutrophil polymorphonuclear leukocytes during bovine coliform mastitis: physiology or pathology? Verhandelingen – Koninklijke Academie voor Geneeskunde van Belgie 66, 97–150.

Calamari L, Petrera F, Abeni F, Bertin G (2011) Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livestock Science 142, 128–137.
Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses.Crossref | GoogleScholarGoogle Scholar |

Cao YZ, Maddox JF, Mastro AM, Scholz RW, Hildenbrandt G, Reddy CC (1992) Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. The Journal of Nutrition 122, 2121–2127.

Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology 33, 233–240.
Biomarkers of oxidative stress in ruminant medicine.Crossref | GoogleScholarGoogle Scholar | 20849293PubMed |

Chauhan SS, Celi P, Leuri BJ, Liu F, Dunshea FR (2013) Dietary selenium/vitamin E at supranutritional doses ameliorate effect of heat stress on physiological parameteres and acid base balance in sheep. Annals of Nutrition & Metabolism 63, 1525

Chauhan SS, Celi P, Fahri FT, Leury BJ, Dunshea FR (2014a) Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress. Journal of Animal Science 92, 4897–4908.
Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyju7nP&md5=03607cece4e320c6236825688be20ad5CAS | 25349340PubMed |

Chauhan SS, Celi P, Leury BJ, Clarke IJ, Dunshea FR (2014b) Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. Journal of Animal Science 92, 3364–3374.
Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKnur3F&md5=2b15c30b63b08d3629a7bb0bb0353cdfCAS | 24894002PubMed |

Chauhan SS, Celi P, Ponnampalam EN, Leury BJ, Liu F, Dunshea FR (2014c) Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Animal Production Science 54, 1525–1536.
Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWjtrbL&md5=15cc8a75ca1ea6ef21d7168b72332622CAS |

Chauhan SS, Celi P, Leury BJ, Liu F, Dunshea FR (2015) High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid base balance in sheep. Journal of Animal Science 93, 3342–3354.
High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid base balance in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12htrjM&md5=69bdd87c03ef0a934bcec61a63efc793CAS | 26440003PubMed |

Chauhan SS, Celi P, Leury B, Liu F, Dunshea FR (2016a) Exhaled breath condensate hydrogen peroxide concentration, a novel biomarker for assessment of oxidative stress in sheep during heat stress. Animal Production Science 56, 1105–1112.
Exhaled breath condensate hydrogen peroxide concentration, a novel biomarker for assessment of oxidative stress in sheep during heat stress.Crossref | GoogleScholarGoogle Scholar |

Chauhan SS, Ponnampalam EN, Celi P, Hopkins DL, Leury BJ, Liu F, Dunshea FR (2016b) High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Ruminant Research 137, 17–23.
High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions.Crossref | GoogleScholarGoogle Scholar |

Combs GF (2001) Selenium in global food systems. British Journal of Nutrition 85, 517–547.

Di Trana A, Celi P, Claps S, Fedele V, Rubino R (2006) The effect of hot season and nutrition on the oxidative status and metabolic profile in dairy goats during mid lactation. Animal Science 82, 717–722.

Doyle PT, Stockdale CR, Jenkin ML, Walker GP, Dunshea FR, Shields PM, McKenna A (2011) Producing milk with uniform high selenium concentrations on commercial dairy farms. Animal Production Science 51, 87–94.
Producing milk with uniform high selenium concentrations on commercial dairy farms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Citb4%3D&md5=5e4ce7119663cc74729ec6ddb204cef8CAS |

Dunshea FR, Leury BJ, Fahri F, DiGiacomo K, Hung A, Chauhan S, Clarke IJ, Collier R, Little S, Baumgard L, Gaughan JB (2013) Amelioration of thermal stress impacts in dairy cows. Animal Production Science 53, 965–975.

Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56, 650–651.
On the existence of a hitherto unrecognized dietary factor essential for reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3sXls1Om&md5=4f01ae9e8d65486b7218db2f41688e88CAS | 17838496PubMed |

Faustman C, Sun Q, Mancini R, Suman SP (2010) Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science 86, 86–94.

Finch JM, Turner RJ (1996) Effects of selenium and vitamin E on the immune responses of domestic animals. Research in Veterinary Science 60, 97–106.
Effects of selenium and vitamin E on the immune responses of domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitlaksb4%3D&md5=be57540b32a805b990b690148a16bd93CAS | 8685547PubMed |

Fischer A, Pallauf J, Gohil K, Weber SU, Packer L, Rimbach G (2001) Effect of selenium and vitamin E deficiency on differential gene expression in rat liver. Biochemical and Biophysical Research Communications 285, 470–475.
Effect of selenium and vitamin E deficiency on differential gene expression in rat liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFOqsr0%3D&md5=01abf68080f474337125d8f1138da3d5CAS | 11444866PubMed |

Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proceedings of the National Academy of Sciences of the United States of America 93, 6146–6151.

González-Calvo L, Joy M, Alberti C, Ripoll G, Molino F, Serrano M, Calvo JH (2014) Effect of finishing period length with alpha-tocopherol supplementation on the expression of vitamin E-related genes in the muscle and subcutaneous fat of light lambs. Gene 552, 225–233.
Effect of finishing period length with alpha-tocopherol supplementation on the expression of vitamin E-related genes in the muscle and subcutaneous fat of light lambs.Crossref | GoogleScholarGoogle Scholar | 25241385PubMed |

Gromer S, Wissing J, Behne D, Ashman K, Schirmer RH, Flohe L, Becker K (1998) A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. The Biochemical Journal 332, 591–592.

Gysin R, Azzi A, Visarius T (2002) Gamma-tocopherol inhibits human cancer cell cycle progression and cell proliferation by down-regulation of cyclins. The FASEB Journal 16, 1952–1954.

Hall JA, Bobe G, Vorachek WR, Kasper K, Traber MG, Mosher WD, Pirelli GJ, Gamroth M (2014) Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows. Biological Trace Element Research 161, 272–287.
Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSqsLrO&md5=23930cac35911b5ee38f07ccddee459fCAS | 25142062PubMed |

Halliwell B (1989) Free-radicals, reactive oxygen species and human-disease: a critical-evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology 70, 737–757.

Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Research 31, 261–272.
Antioxidant defence mechanisms: from the beginning to the end (of the beginning).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslGjsL4%3D&md5=34585230cbb141cf12cd18362c298970CAS | 10517532PubMed |

Halliwell B, Gutteridge JMC (1990) Role of free-radicals and catalytic metal-ions in human-disease: an overview. Methods in Enzymology 186, 1–85.
Role of free-radicals and catalytic metal-ions in human-disease: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVKrt7Y%3D&md5=b49f922edbdc05a5c3e8a6f0686b76c5CAS | 2172697PubMed |

Heard JW, Stockdale CR, Walker GP, Leddin CM, Dunshea FR, McIntosh GH, Shields PM, McKenna A, Young GP, Doyle PT (2007) Increasing selenium concentration in milk: effects of amount of selenium from yeast and cereal grain supplements. Journal of Dairy Science 90, 4117–4127.
Increasing selenium concentration in milk: effects of amount of selenium from yeast and cereal grain supplements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslequro%3D&md5=9e736d5ab7718aca0c50e2fa39076aa0CAS | 17699029PubMed |

Hefnawy AE, Tortora-Perez JL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Research 89, 185–192.
The importance of selenium and the effects of its deficiency in animal health.Crossref | GoogleScholarGoogle Scholar |

Hidiroglou N, Cave N, Atwal AS, Farnworth ER, McDowell LR (1992a) Comparative vitamin-E requirements and metabolism in livestock. Annales De Recherches Veterinaires 23, 337–359.

Hidiroglou N, McDowell LR, Papas AM, Antapli M, Wilkinson NS (1992b) Bioavailability of vitamin-E compounds in lambs. Journal of Animal Science 70, 2556–2561.

Hoekstra WG (1975) Biochemical function of selenium and its relation to vitamin-E. Federation Proceedings 34, 2083–2089.

Hogan JS, Weiss WP, Smith KL (1993) Role of vitamin-E and selenium in host-defense against mastitis. Journal of Dairy Science 76, 2795–2803.
Role of vitamin-E and selenium in host-defense against mastitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1Cqsrs%3D&md5=3811584546952063b2a19942f946158eCAS | 8227683PubMed |

Hugejiletu H, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ, Hall JA (2013) Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep. Biological Trace Element Research 154, 28–44.
Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVynu7s%3D&md5=1ea6c8b2f26f93fb7a12fa0fc4b2b2a7CAS | 23754590PubMed |

Jose CG, Jacob RH, Pethick DW, Gardner GE (2016) Short term supplementation rates to optimise vitamin E concentration for retail colour stability of Australian lamb meat. Meat Science 111, 101–109.
Short term supplementation rates to optimise vitamin E concentration for retail colour stability of Australian lamb meat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyrsbzP&md5=1f561fc7ac7cce688cff1af935316138CAS | 26360880PubMed |

Jukola E, Hakkarainen J, Saloniemi H, Sankari S (1996) Blood selenium, vitamin E, vitamin A, and beta-carotene concentrations and udder health, fertility treatments, and fertility. Journal of Dairy Science 79, 838–845.

Juniper DT, Phipps RH, Givens DI, Jones AK, Green C, Bertin G (2008) Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. Journal of Animal Science 86, 197–204.
Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOqsr%2FI&md5=cc62d2be68121a9ba4b51a870c9deff5CAS | 17878272PubMed |

Juniper DT, Phipps RH, Ramos-Morales E, Bertin G (2009) Effect of high dose selenium enriched yeast diets on the distribution of total selenium and selenium species within lamb tissues. Livestock Science 122, 63–67.

Kasapidou E, Wood JD, Richardson RI, Sinclair LA, Wilkinson RG, Enser M (2012) Effect of vitamin E supplementation and diet on fatty acid composition and on meat colour and lipid oxidation of lamb leg steaks displayed in modified atmosphere packs. Meat Science 90, 908–916.

Kolb E, Seehawer J (2002) The role of selenium compounds, vitamin E and other factors in the prevention of retained placenta: a review. Tierarztliche Umschau 57, 666–672.

Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300, 1439–1443.
Characterization of mammalian selenoproteomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGktb8%3D&md5=11b2e9445b0bf2b244c618d8baac8381CAS | 12775843PubMed |

Kumar N, Garg AK, Dass RS, Chaturvedi VK, Mudgal V, Varshney VP (2009) Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Animal Feed Science and Technology 153, 77–87.

Lawler TL, Taylor JB, Finley JW, Caton JS (2004) Effect of supranutritional and organically bound selenium on performance, carcass characteristics, and selenium distribution in finishing beef steers. Journal of Animal Science 82, 1488–1493.

Lean IJ, Saun RV, DeGaris PJ (2013) Mineral and antioxidant management of transition dairy cows. The Veterinary Clinics of North America. Food Animal Practice 29, 367–386.
Mineral and antioxidant management of transition dairy cows.Crossref | GoogleScholarGoogle Scholar | 23809896PubMed |

LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, TenHag J, Walton JS, Johnson WH (2002) The effect of prepartum injection of vitamin E on health in transition dairy cows. Journal of Dairy Science 85, 1416–1426.
The effect of prepartum injection of vitamin E on health in transition dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1SrsLY%3D&md5=8d5bd16e10e7699cd1ab7ff09998133cCAS | 12146472PubMed |

Liu Q, Lanari MC, Schaefer DM (1995) A review of dietary vitamin-e supplementation for improvement of beef quality. Journal of Animal Science 73, 3131–3140.

Liu SM, Masters D, Ferguson M, Thompson A (2014) Vitamin E status and reproduction in sheep: potential implications for Australian sheep production. Animal Production Science 54, 694–714.
Vitamin E status and reproduction in sheep: potential implications for Australian sheep production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFeltrc%3D&md5=b71a523cbc31479c67929922e9707599CAS |

Liu HY, Zhu WZ, Lu BY, Wei ZH, Ren DX (2015) Effect of feed selenium supplementation on milk selenium distribution and mozzarella quality. Journal of Dairy Science
Effect of feed selenium supplementation on milk selenium distribution and mozzarella quality.Crossref | GoogleScholarGoogle Scholar | 26409965PubMed |

Lykkesfeldt J, Svendsen O (2007) Oxidants and antioxidants in disease: oxidative stress in farm animals. Veterinary Journal (London, England) 173, 502–511.
Oxidants and antioxidants in disease: oxidative stress in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Sis74%3D&md5=52da2dceedb06b217925eae7aab59afeCAS |

Machlin LJ, Bendich A (1987) Free-radical tissue-damage: protective role of antioxidant nutrients. The FASEB Journal 1, 441–445.

Mahoney CW, Azzi A (1988) Vitamin-E inhibits protein kinase-C activity. Biochemical and Biophysical Research Communications 154, 694–697.
Vitamin-E inhibits protein kinase-C activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVKqtrc%3D&md5=cd6fc60e1740fa37fe11923ad0b52b61CAS | 3401229PubMed |

Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA-binding activity of NF-chi-B by reduction of a disulfide bond involving cysteine 62. Nucleic Acids Research 20, 3821–3830.

McDowell LR, Williams SN, Hidiroglou N, Njeru CA, Hill GM, Ochoa L, Wilkinson NS (1996) Vitamin E supplementation for the ruminant. Animal Feed Science and Technology 60, 273–296.
Vitamin E supplementation for the ruminant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvF2rsb0%3D&md5=925e3c02def048a3d11a15df07a7acc8CAS |

McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxidants & Redox Signalling 4, 339–351.
Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFCht70%3D&md5=145f6d402f017038ed029cb946d8126aCAS |

Miller JK, Brzezinskaslebodzinska E, Madsen FC (1993) Oxidative stress, antioxidants, and animal function. Journal of Dairy Science 76, 2812–2823.
Oxidative stress, antioxidants, and animal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Olt7g%3D&md5=a674759dfbd4ce7c8738535563cb2fdaCAS | 8227685PubMed |

Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Franceschi C, Monti D (2014) Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Research Reviews 14, 81–101.
Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2gsLw%3D&md5=367e0127d6c4f76b6bcbbdc8f85a3688CAS | 24418256PubMed |

Moreno-Reyes R, Egrise D, Boelaert M, Goldman S, Meuris S (2006) Iodine deficiency mitigates growth retardation and osteopenia in selenium-deficient rats. The Journal of Nutrition 136, 595–600.

Muth OH, Oldfield JE, Remmert LF, Schubert JR (1958) Effects of selenium and vitamin-E on white muscle disease. Science 128, 1090–1091.
Effects of selenium and vitamin-E on white muscle disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG1M%2FitFKrsA%3D%3D&md5=984ee0dcbf8b48f897e87486ada39d0aCAS | 13592294PubMed |

Ndiweni N, Finch JM (1995) Effects of in vitro supplementation of bovine mammary gland macrophages and peripheral blood lymphocytes with α-tocopherol and sodium selenite: implications for udder defences. Veterinary Immunology and Immunopathology 47, 111–121.
Effects of in vitro supplementation of bovine mammary gland macrophages and peripheral blood lymphocytes with α-tocopherol and sodium selenite: implications for udder defences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslSqu7g%3D&md5=cfcfe06d04611949bc24665fb0d6c444CAS | 8533288PubMed |

NRC (2007) ‘Nutrient requirements of small ruminants sheep, goats, cervids, and new world camelids.’ (National Academies Press: Washington, DC)

Nyman AK, Emanuelson U, Holtenius K, Ingvartsen KL, Larsen T, Persson Waller K (2008) Metabolites and immune variables associated with somatic cell counts of primiparous dairy cows. Journal of Dairy Science 91, 2996–3009.

Packer L, Weber SU, Rimbach G (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. The Journal of Nutrition 131, 369S–373S.

Politis I (2012) Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality. Animal 6, 1427–1434.
Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFansrzN&md5=f962febfa366fa471e0be54f3cb2b361CAS | 23031515PubMed |

Politis I, Hidiroglou M, Batra TR, Gilmore JA, Gorewit RC, Scherf H (1995) Effects of vitamin E on immune function of dairy cows. American Journal of Veterinary Research 56, 179–184.

Politis I, Bizelis I, Tsiaras A, Baldi A (2004) Effect of vitamin E supplementation on neutrophil function, milk composition and plasmin activity in dairy cows in a commercial herd. The Journal of Dairy Research 71, 273–278.
Effect of vitamin E supplementation on neutrophil function, milk composition and plasmin activity in dairy cows in a commercial herd.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvF2msrc%3D&md5=41baf4e9197833be7c28d7b080d496a7CAS | 15354572PubMed |

Ponnampalam EN, Norng S, Burnett VF, Dunshea FR, Jacobs JL, Hopkins DL (2014) The synergism of biochemical components controlling lipid oxidation in lamb muscle. Lipids 49, 757–766.
The synergism of biochemical components controlling lipid oxidation in lamb muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptl2rtLk%3D&md5=cebda3fdfa7954bfbd10a8047564087eCAS | 24902796PubMed |

Putnam ME, Comben N (1987) VITAMIN-E. The Veterinary Record 121, 541–545.

Rayman MP (2012) Selenium and human health. Lancet 379, 1256–1268.
Selenium and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Orsb8%3D&md5=cf66d84d7130ddc8670ca4954a8173bbCAS | 22381456PubMed |

Rhoads RP, Baumgard LH, Suagee JK, Sanders SR (2013) Nutritional interventions to alleviate the negative consequences of heat stress. Advances in Nutrition 4, 267–276.
Nutritional interventions to alleviate the negative consequences of heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCjsrnO&md5=9dc95d3e668a35e724fde32bc83fab9dCAS | 23674792PubMed |

Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD (2002a) Regulation of cell signalling by vitamin E. The Proceedings of the Nutrition Society 61, 415–425.
Regulation of cell signalling by vitamin E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVeqtQ%3D%3D&md5=61e980ce00753c7fb9d29cb2725feb6dCAS | 12691170PubMed |

Rimbach G, Fischer A, Pallauf J, Virgili F (2002b) Vitamin E and selenium effects on differential gene expression. In ‘Antioxidant vitamins C and E’. (Eds L Packer, MG Traber, K Kraemer, B Frei) pp. 209–215. (Amer Oil Chemists: Champaign, IL)

Rimbach G, Moehring J, Huebbe P, Lodge JK (2010) Gene-regulatory activity of alpha-tocopherol. Molecules (Basel, Switzerland) 15, 1746–1761.
Gene-regulatory activity of alpha-tocopherol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1ygu74%3D&md5=acab9952a45080389269f99713ce7bf5CAS |

Rock MJ, Kincaid RL, Carstens GE (2001) Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Ruminant Research 40, 129–138.
Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs.Crossref | GoogleScholarGoogle Scholar | 11295395PubMed |

Rooke JA, Robinson JJ, Arthur JR (2004) Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. The Journal of Agricultural Science 142, 253–262.
Effects of vitamin E and selenium on the performance and immune status of ewes and lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGitrnM&md5=eadfb2b210793bee79220bcb42fa3d9dCAS |

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590.
Selenium: biochemical role as a component of glutathione peroxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXps1ensg%3D%3D&md5=b22d099a50aa6d06156456ba63a182e8CAS | 4686466PubMed |

Saker KE, Fike JH, Veit H, Ward DL (2004) Brown seaweed- (Tasco™) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs. Journal of Animal Physiology and Animal Nutrition 88, 122–130.

Salvatore D, Low SC, Berry M, Maia AL, Harney JW, Croteau W, Stgermain DL, Larsen PR (1995) Type-3 iodothyronine deiodinase: cloning, in-vitro expression, and functional-analysis of the placental selenoenzyme. The Journal of Clinical Investigation 96, 2421–2430.
Type-3 iodothyronine deiodinase: cloning, in-vitro expression, and functional-analysis of the placental selenoenzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltF2huw%3D%3D&md5=c9fdb64e3dca4199e54e81344626650fCAS | 7593630PubMed |

Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research 96, 49–52.
Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats.Crossref | GoogleScholarGoogle Scholar |

Smith KL, Hogan JS, Weiss WP (1997) Dietary vitamin E and selenium affect mastitis and milk quality. Journal of Animal Science 75, 1659–1665.

Song YX, Hou ZX, Zhang L, Wang JG, Liu XR, Zhou ZQ, Cao BY (2015) Effect of dietary selenomethionine supplementation on growth performance, tissue Se concentration, and blood glutathione peroxidase activity in kid boer goats. Biological Trace Element Research 167, 242–250.
Effect of dietary selenomethionine supplementation on growth performance, tissue Se concentration, and blood glutathione peroxidase activity in kid boer goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVWgtLc%3D&md5=9712d4f7903149d535bae7de09a5bfb9CAS | 25813835PubMed |

Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Veterinary Medicine International 8,
Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunology and Immunopathology 128, 104–109.
Impact of oxidative stress on the health and immune function of dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVOgtbw%3D&md5=206966b77fc356a69d781062f6b505f6CAS | 19027173PubMed |

Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Veterinary Journal 176, 70–76.

St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. Journal of Dairy Science 86, E52–E77.
Economic losses from heat stress by US livestock industries.Crossref | GoogleScholarGoogle Scholar |

Stewart WC, Bobe G, Pirelli GJ, Mosher WD, Hall JA (2012a) Organic and inorganic selenium: III. Ewe and progeny performance. Journal of Animal Science 90, 4536–4543.
Organic and inorganic selenium: III. Ewe and progeny performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1SrtQ%3D%3D&md5=9a8626d13bd5b8e7684258ab7fdd2b76CAS | 22767089PubMed |

Stewart WC, Bobe G, Vorachek WR, Pirelli GJ, Mosher WD, Nichols T, Van Saun RJ, Forsberg NE, Hall JA (2012b) Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. Journal of Animal Science 90, 577–584.
Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVeltLs%3D&md5=d797bc63d203ea24fbbebdc5f680594aCAS | 21965446PubMed |

Stewart WC, Bobe G, Vorachek WR, Stang BV, Pirelli GJ, Mosher WD, Hall JA (2013) Organic and inorganic selenium: IV. Passive transfer of immunoglobulin from ewe to lamb. Journal of Animal Science 91, 1791–1800.
Organic and inorganic selenium: IV. Passive transfer of immunoglobulin from ewe to lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWrurY%3D&md5=55a92d7498d8112d99e85933dbb658f4CAS | 23408818PubMed |

Stockdale CR, Shields PM, McKenna A, Walker GP, Dunshea FR, Doyle PT (2011) Selenium levels in cows fed pasture and concentrates or a total mixed ration and supplemented with selenized yeast to produce milk with supra-nutritional selenium concentrations. Journal of Dairy Science 94, 262–272.
Selenium levels in cows fed pasture and concentrates or a total mixed ration and supplemented with selenized yeast to produce milk with supra-nutritional selenium concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslCntL0%3D&md5=17b07a4c35d819924be857a417614314CAS | 21183036PubMed |

Suman SP, Hunt MC, Nair MN, Rentfrow G (2014) Improving beef color stability: practical strategies and underlying mechanisms. Meat Science 98, 490–504.

Surai PF, Karadas F, Pappas AC, Sparks NHC (2006) Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny. British Poultry Science 47, 65–72.

Suttle NF (2010) ‘Mineral nutrition of livestock.’ 4th edin. (CABI Publishing: Wallingford, UK)

Taylor JB (2005) Time-dependent influence of supranutritional organically bound selenium on selenium accumulation in growing wether lambs. Journal of Animal Science 83, 1186–1193.

Trevisan M, Browne R, Ram M, Muti P, Freudenheim J, Carosella AM, Armstrong D (2001) Correlates of markers of oxidative status in the general population. American Journal of Epidemiology 154, 348–356.
Correlates of markers of oxidative status in the general population.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvltVWhuw%3D%3D&md5=5ffa3d54fb05027beb07fef18565187fCAS | 11495858PubMed |

Trout JP, McDowell LR, Hansen PJ (1998) Characteristics of the estrous cycle and antioxidant status of lactating Holstein cows exposed to heat stress. Journal of Dairy Science 81, 1244–1250.

Tufarelli V, Khan RU, Laudadio V (2011) Vitamin and trace element supplementation in grazing dairy ewe during the dry season: effect on milk yield, composition, and clotting aptitude. Tropical Animal Health and Production 43, 955–960.

Uglietta R, Doyle PT, Walker GP, Heard JW, Leddin CM, Stockdale CR, McIntosh GH, Young GP, Dunshea FR (2008) Bioavailability of selenium from selenium-enriched milk assessed in the artificially reared neonatal pig. Nutrition & Dietetics 65, S37–S40.
Bioavailability of selenium from selenium-enriched milk assessed in the artificially reared neonatal pig.Crossref | GoogleScholarGoogle Scholar |

Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285, 1393–1396.

Velázquez-Garduño G, Mariezcurrena-Berasain M, Salem A, Gutiérrez-Ibañez A, Bernal-Martínez L, Pinzón-Martínez D, Kholif A, Odongo N, Mariezcurrena-Berasain M (2015) Effect of organic selenium-enriched yeast supplementation in finishing sheep diet on carcasses microbiological contamination and meat physical aracteristics. Italian Journal of Animal Science 14, 443–447.
Effect of organic selenium-enriched yeast supplementation in finishing sheep diet on carcasses microbiological contamination and meat physical aracteristics.Crossref | GoogleScholarGoogle Scholar |

Walker GP, Dunshea FR, Heard JW, Stockdale CR, Doyle PT (2010) Output of selenium in milk, urine, and feces is proportional to selenium intake in dairy cows fed a total mixed ration supplemented with selenium yeast. Journal of Dairy Science 93, 4644–4650.
Output of selenium in milk, urine, and feces is proportional to selenium intake in dairy cows fed a total mixed ration supplemented with selenium yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKmsLnL&md5=bf30ed4e0c2001fed704672c9e78e282CAS | 20854998PubMed |

Waller KP (2000) Mammary gland immunology around parturition. Influence of stress, nutrition and genetics. Advances in Experimental Medicine and Biology 480, 231–245.

Waller KP, Sandgren CH, Emanuelson U, Jensen SK (2007) Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. Journal of Dairy Science 90, 3640–3646.

Weiss WP (1998) Requirements of fat-soluble vitamins for dairy cows: a review. Journal of Dairy Science 81, 2493–2501.
Requirements of fat-soluble vitamins for dairy cows: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVCrtrk%3D&md5=68517bcab8e2db479d29c384bff1ee02CAS | 9785241PubMed |

Weiss WP, Hogan JS, Todhunter DA, Smith KL (1997) Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. Journal of Dairy Science 80, 1728–1737.
Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Kqtbw%3D&md5=44a1ce3bd24a9d6b46665d1e2af3f774CAS | 9276813PubMed |

Wichtel JJ, Craigie AL, Freeman DA, Varela-Alvarez H, Williamson NB (1996) Effect of selenium and iodine supplementation on growth rate and on thyroid and somatotropic function in dairy calves at pasture. Journal of Dairy Science 79, 1865–1872.
Effect of selenium and iodine supplementation on growth rate and on thyroid and somatotropic function in dairy calves at pasture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslGntr0%3D&md5=4265fa5ff93b176a324909709e3b173bCAS | 8923257PubMed |

Willshire JA, Payne JH (2011) Selenium and vitamin E in dairy cows: a review. Cattle Practitioner 19, 22–30.

Xun WJ, Shi LG, Yue WB, Zhang CX, Ren YS, Liu Q (2012) Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biological Trace Element Research 150, 130–136.
Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep.Crossref | GoogleScholarGoogle Scholar |