Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effect of ghrelin and leptin receptors genes polymorphisms on production results and physicochemical characteristics of M. pectoralis superficialis in broiler chickens

U. Kaczor A D , K. Poltowicz B , M. Kucharski A , A. M. Sitarz A , J. Nowak B , D. Wojtysiak C and D. A. Zieba A
+ Author Affiliations
- Author Affiliations

A Department of Animal Biotechnology, University of Agriculture in Krakow, Redzina 1B, 30-248 Krakow, Poland.

B Department of Animal Genetics and Breeding, National Research Institute of Animal Production, 32-083 Balice near Krakow, Poland.

C Department of Animal Reproduction and Anatomy, University of Agriculture in Krakow, 30-059 Krakow, Poland.

D Corresponding author. Email: rzkaczor@cyf-kr.edu.pl

Animal Production Science 57(1) 42-50 https://doi.org/10.1071/AN15152
Submitted: 24 March 2015  Accepted: 1 September 2015   Published: 22 January 2016

Abstract

Ghrelin and leptin and their receptors GHSR and LEPR regulate food intake, the processes in adipose tissue, and the body’s energy homeostasis in mammals. The aim of the present study was to determine the effect of GHSR/Csp6I and LEPR/Bsh1236I polymorphisms on the meat production parameters of broiler chickens reared to 42 days of age. In 318 fast-growing Hubbard Flex and Ross 308 chickens, g.3051C > T substitution at the GHSR locus and a GGTCAA deletion at positions g.3407_3409del and g.3411_3413del were identified. The use of restriction enzyme Bsh1236I showed the presence of two transitions g.352C > T and g.427G > A in LEPR locus. The chickens were classified into four GHSR/Csp6I and into five LEPR/Bsh1236I diplotypes. GHSR and LEPR polymorphisms were found to influence final bodyweight, daily gain, dressing percentage without giblets, proportion of giblets and the quality characteristics of M. pectoralis superficialis. GHSR/Csp6I and LEPR/Bsh1236I had an effect on pH24 h (P < 0.05) and lightness (L*) of M. pectoralis superficialis (P < 0.05), whereas GHSR/Csp6I influenced shear force (P < 0.05) and thawing loss (P < 0.05). GHSR/Csp6I and LEPR/Bsh1236I were found to have no effect on the abdominal fat content in chicken carcasses. Single nucleotide polymorphisms reported in the present study could be used in breeding programs as selection markers for growth traits and poultry meat quality.

Additional keywords: GHSR, LEPR, meat quality.


References

Aberle ED, Forrest JC, Gerrard DE, Mills EW (2001) ‘Principles of meat science.’ 4th edn. (Kendall/Hunt Publishing Co.: Dubuque, IA)

Adachi H, Takemoto Y, Bungo T, Ohkubo T (2008) Chicken leptin receptor is functional in activating JAK-STAT pathway in vitro. The Journal of Endocrinology 197, 335–342.
Chicken leptin receptor is functional in activating JAK-STAT pathway in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOltL8%3D&md5=7d7812350bc7d3182511fb13c5d20001CAS | 18434363PubMed |

Ashwell CM, Czerwinski SM, Brocht DM, McMurtry JP (1999) Hormonal regulation of leptin expression in 374 broiler chickens. The American Journal of Physiology 276, 226–232.

Bahrami A, Miraei-Ashtiani SR, Mehrabani-Yeganeh H (2012) Associations of growth hormone secretagogue receptor (GHSR) genes polymorphisms and protein changes with carcass traits in sheep. Gene 505, 379–383.
Associations of growth hormone secretagogue receptor (GHSR) genes polymorphisms and protein changes with carcass traits in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGju7k%3D&md5=f9e225e56a0cff632a95c03d8d87499dCAS | 22735618PubMed |

Barb CR (1999) The brain-pituitary-adipocyte axis: role of leptin in modulating neuroendocrine function. Journal of Animal Science 77, 1249–1257.

Barbut B, Sosnicki AA, Lonergan SM, Knapp T, Ciobanu DC, Gatcliffe LJ, Huff-Lonergan E, Wilson EW (2008) Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science 79, 46–63.
Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmsLo%3D&md5=a2208efd26da133f7361c6fbc6b91cb1CAS |

Cummings DE, Foster KE (2003) Ghrelin-leptin tango in body-weight regulation. Gastroenterology 124, 1532–1535.
Ghrelin-leptin tango in body-weight regulation.Crossref | GoogleScholarGoogle Scholar | 12730891PubMed |

da Silva RC, Ferraz JB, Meirelles FV, Eler JP, Balieiro JC, Cucco DC, Mattos EC, Rezende FM, Silva SL (2012) Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle. Genetics and Molecular Research 11, 3721–3728.
Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wht7jL&md5=4c8189e1769e3d571069c494036840a7CAS | 22930433PubMed |

Demeure O, Duclos MJ, Bacciu N, LeMignon G, Filangi O, Pitel F, Boland A, Laqarrigue S, Coqburn LA, Simon J, Le Roy P, Le Bihan-Duval E (2013) Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines. Genetics, Selection, Evolution. 45,
Genome-wide interval mapping using SNPs identifies new QTL for growth, body composition and several physiological variables in an F2 intercross between fat and lean chicken lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlymsbo%3D&md5=631d4d558290923d28759b77d0aa5d0bCAS | 24079476PubMed |

Dransfield E, Sosnicki AA (1999) Relationship between muscle growth and poultry meat quality. Poultry Science 78, 743–746.
Relationship between muscle growth and poultry meat quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ktl2kug%3D%3D&md5=ca9e0beff0270a0db6f4e1f2a1e8ecdaCAS | 10228972PubMed |

El Moujahid EM, Chen S, Jin S, Lu Y, Zhang D, Ji C, Yang N (2014) Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens. Poultry Science 93, 1910–1915.
Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaks7nN&md5=553d4da2967252aac21205d6e4b787d4CAS |

Fang M, Nie Q, Luo C, Zhang D, Zhang X (2007) An 8bp indel in exon 1 of Ghrelin gene associated with chicken growth. Domestic Animal Endocrinology 32, 216–225.
An 8bp indel in exon 1 of Ghrelin gene associated with chicken growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVyhsLs%3D&md5=ca16119fc68a15ea2f55a188ccfb8c5eCAS | 16766157PubMed |

Fang M, Nie Q, Luo C, Zhang D, Zhang X (2010) Associations of GHSR gene polymorphisms with chicken growth and carcass traits. Molecular Biology Reports 37, 423–428.
Associations of GHSR gene polymorphisms with chicken growth and carcass traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFSmug%3D%3D&md5=69cde2572ba985f37efcffc255ee8bb9CAS | 19437137PubMed |

Ferraz JB, Pinto LF, Meirelles FV, Eler JP, de Rezende FM, Oliveira EC, Almeida HB, Woodward B, Nkrumah D (2009) Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genetics and Molecular Research 8, 1360–1366.
Association of single nucleotide polymorphisms with carcass traits in Nellore cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOgu7bM&md5=593059dae3384a4c04413db000c475fcCAS | 19937580PubMed |

Fletcher DL, Qiao M, Smith DP (2000) The relationship of raw broiler breast meat color and pH to cooked meat color and pH. Poultry Science 79, 784–788.
The relationship of raw broiler breast meat color and pH to cooked meat color and pH.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czpvVGmsg%3D%3D&md5=ab99601e44a00c74fb8951c01860774bCAS | 10824969PubMed |

Friedman-Einat M, Boswell T, Horev G, Girishvarma G, Dunn IC, Talbot RT, Sharp PJ (1999) The chicken leptin gene: has it been cloned? General and Comparative Endocrinology 115, 354–363.
The chicken leptin gene: has it been cloned?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslCmurw%3D&md5=fc9f00f227413d9f231fce3f69993e43CAS | 10480986PubMed |

Friedman-Einat M, Cogburn LA, Yosefi S, Hen G, Shinder D, Shirak A, Seroussi E (2014) Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia). Endocrinology 155, 3376–3384.
Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Cjur7O&md5=6041dc39cca89f4bfe98fa9add0d0067CAS | 24758303PubMed |

Garcia EA, King P, Sidhu K, Ohgusu H, Walley A, Lecoeur C, Gueorguiev M, Khalaf S, Davies D, Grossman AB, Koijma M, Petersenn S, Froguel P, Korbonits M (2009) The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes. European Journal of Endocrinology 161, 307–315.
The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVyrsrY%3D&md5=72bb8503d7c6b7e9ff0921cdb0add9deCAS | 19460888PubMed |

Gertler AD, Shinder S, Yosefi M, Shpilman CI, Rosenblum M, Ruzal E, Seroussi E, Friedman-Einat M (2014) Pegylated leptin antagonist with strong orexigenic activity in mice is not effective in chickens. The Journal of Experimental Biology 217, 180–184.
Pegylated leptin antagonist with strong orexigenic activity in mice is not effective in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFyms7c%3D&md5=64e6f47891b08698492e4ad5d9ae8523CAS |

Grau R, Hamm R (1953) Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften 40, 29–30.
Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXms1Cksw%3D%3D&md5=b9fd3d7105cc5686e15c14fc0dd0db83CAS |

Horev G, Einat P, Aharoni T, Eshadt Y, Friedman-Einat M (2000) Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Molecular and Cellular Endocrinology 162, 95–106.
Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFKnsro%3D&md5=87f92e25a62018eec93c970a76592f0cCAS | 10854702PubMed |

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens RM, Rigby MD, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Patrick RG, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974–977.
A receptor in pituitary and hypothalamus that functions in growth hormone release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVGjs7w%3D&md5=038bf6452e9d7c78cf32bb1d6245838eCAS | 8688086PubMed |

Huang G, Li J, Wang H, Lan X, Wang Y (2014a) Discovery of a novel Functional Leptin Protein (LEP) in Zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary. Endocrinology 155, 3385–3396.
Discovery of a novel Functional Leptin Protein (LEP) in Zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Cjur7I&md5=902f32a164034a79ec5e51a88ad1c6f3CAS | 24823393PubMed |

Huang AX, Li JJ, Tian Y, Shen JD, Tao ZR, Li GQ, Lu LZ, Fu Y, Wu TX (2014b) RNA interference of leptin receptor in chicken adipocytes. Genetics and Molecular Research 13, 5901–5907.
RNA interference of leptin receptor in chicken adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVaqtbnL&md5=96b1ed778b9175f261c3962ee10aeebbCAS | 25117348PubMed |

Kaiya H, Darras VM, Kangawa K (2007) Ghrelin in birds: its structure, distribution and function. Japanese Poultry Science 44, 1–18.
Ghrelin in birds: its structure, distribution and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Smtbk%3D&md5=ac89bfac0f9094a68ceb8d9161dc3d20CAS |

Kaiya H, Furuse M, Miyazato M, Kangawa K (2009) Current knowledge of the roles of ghrelin in regulating food intake and energy balance in birds. General and Comparative Endocrinology 163, 33–38.
Current knowledge of the roles of ghrelin in regulating food intake and energy balance in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2itbg%3D&md5=f15407137b9c5d96855804d83c6deb33CAS | 19056391PubMed |

Khoshoii AA, Mobini B, Rahimi E (2013) Comparison of chicken strains: muscle fibre diameter and numbers in pectoralis superficialis muscle. Global Veterinaria 11, 55–58.

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660.
Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Ki&md5=aa2577e18fa8174f075025343774e7feCAS | 10604470PubMed |

Komatsu M, Fujimori Y, Sato Y, Okamura H, Sasaki S, Itoh T, Morita M, Nakamura R, Oe T, Furuta M, Yasuda J, Kojima T, Watanabe T, Hayashi T, Malau-Aduli AE, Takahasi H (2010) Nucleotide polymorphisms and the 5ʹ-UTR transcriptional analysis of the bovine growth hormone secretagogue receptor 1a (GHSR1a) gene. Animal Science Journal 81, 530–550.
Nucleotide polymorphisms and the 5ʹ-UTR transcriptional analysis of the bovine growth hormone secretagogue receptor 1a (GHSR1a) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmu7%2FE&md5=21c2b59927c92fec9e41d904322829ecCAS | 20887305PubMed |

Komatsu M, Itoh T, Fujimori Y, Satoh M, Miyazaki Y, Takahasi H, Shimizu K, Malau-Aduli AE, Morita M (2011) Genetic association between GHSR1a 5ʹUTR-microsatelite and nt-7(C>A) loci and growth and carcass traits in Japanese Black cattle. Animal Science Journal 82, 396–405.
Genetic association between GHSR1a 5ʹUTR-microsatelite and nt-7(C>A) loci and growth and carcass traits in Japanese Black cattle.Crossref | GoogleScholarGoogle Scholar | 21615832PubMed |

Lei M, Luo C, Peng X, Fang M, Nie Q, Zhang D, Yang G, Zhang X (2007) Polymorphism of growth-correlated genes associated with fatness and muscle fiber traits in chickens. Poultry Science 86, 835–842.
Polymorphism of growth-correlated genes associated with fatness and muscle fiber traits in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVSku7Y%3D&md5=75bbc70cd60faff8a25ccf4fb1b4fd63CAS | 17435016PubMed |

Li C, Li CK, Li J, Mo DL, Xu RF, Chen GH, Qiangba YZ, Ji SL, Tang XH, Fan B, Zhu MJ, Xiong TA, Guan X, Liu B (2006) Polymorphism of ghrelin gene in twelve indigenous chicken breeds and its relationship with chicken growth traits. Asian-Australasian Journal of Animal Sciences 19, 153–159.
Polymorphism of ghrelin gene in twelve indigenous chicken breeds and its relationship with chicken growth traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlamsbvJ&md5=b394793a3d3da690576ccb0d1cc5d56fCAS |

Liefers SC, Veerkamp RF, te Pas MF, Delavaud C, Chilliard Y, Platje M, van der Lende T (2005) Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Animal Genetics 36, 111–118.
Leptin promoter mutations affect leptin levels and performance traits in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslyit70%3D&md5=7b4bc4afa491f45b7bd81943e515f375CAS | 15771719PubMed |

Liu X, Dunn IC, Sharp PJ, Boswell T (2007) Molecular cloning and tissue distribution of a short form chicken leptin receptor. Domestic Animal Endocrinology 32, 155–166.
Molecular cloning and tissue distribution of a short form chicken leptin receptor.Crossref | GoogleScholarGoogle Scholar | 16531001PubMed |

Maddineni S, Metzger S, Ocon O, Hendricks G, Ramachandran R (2005) Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology 146, 4250–4256.
Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmurnI&md5=dfa994572eef4e368a5f72d1f7de3b1cCAS | 15976057PubMed |

Muñoz G, Alcázar E, Fernández A, Barragán C, Carrasco A, de Pedro E, Silió L, Sánchez JL, Rodriguez MC (2011) Effects of porcine MC4R and LEPR gene polymorphisms, gender and Duroc sire line on economic traits in Duroc x Iberian crossbred pigs. Meat Science 88, 169–173.
Effects of porcine MC4R and LEPR gene polymorphisms, gender and Duroc sire line on economic traits in Duroc x Iberian crossbred pigs.Crossref | GoogleScholarGoogle Scholar | 21196086PubMed |

Nie Q, Zeng H, Lei M, Ishag NA, Fang M, Sun B, Yang G, Zhang X (2004) Genomic organisation of the chicken ghrelin gene and its single nucleotide polymorphisms detected by denaturing high-performance liquid chromatography. British Poultry Science 45, 611–618.
Genomic organisation of the chicken ghrelin gene and its single nucleotide polymorphisms detected by denaturing high-performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSnsbrO&md5=36d052f7c136fdd29098b1889eba0a0fCAS | 15623213PubMed |

Nie Q, Lei M, Ouyang J, Zeng H, Yang G, Zhang X (2005) Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography. Genetics, Selection, Evolution. 37, 339–360.
Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVKrtLw%3D&md5=ec1d8e73b30ebcc162aa9a1467f98cafCAS | 15823239PubMed |

Nie Q, Fang M, Xie L, Peng X, Xu H, Luo C, Zhang D, Zhang X (2009) Molecular characterization of the ghrelin and ghrelin receptor genes and effects on fat deposition in chicken and duck. Journal of Biomedicine & Biotechnology 2009,
Molecular characterization of the ghrelin and ghrelin receptor genes and effects on fat deposition in chicken and duck.Crossref | GoogleScholarGoogle Scholar |

Ohkubo T, Tanaka M, Nakashima K (2000) Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochimica et Biophysica Acta 1491, 303–308.
Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlKhsL8%3D&md5=1e91c4ec3196095b797ddbfc488afdbfCAS | 10760595PubMed |

Ohkubo T, Hirota K, Murase D, Adachi H, Nozawa-Takeda T, Sugita S (2014) Avian blood induced intranuclear translocation of STAT3 via the chicken leptin receptor. Comparative Biochemistry and Physiology – Part B: Biochemistry and Molecular Biology 174, 9–14.
Avian blood induced intranuclear translocation of STAT3 via the chicken leptin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFansrzL&md5=039e2ac92c482743114346edc0520240CAS |

Pérez-Montarelo D, Fernández A, Folch JM, Pena RN, Ovilo C, Rodriguez C, Silió L, Fernández AI (2012) Joint effects of porcine leptin and leptin receptor polymorphisms on productivity and quality traits. Animal Genetics 43, 805–809.
Joint effects of porcine leptin and leptin receptor polymorphisms on productivity and quality traits.Crossref | GoogleScholarGoogle Scholar | 22497241PubMed |

Pinto LF, Ferraz JB, Pedrosa VB, Eler JP, Meirelles FV, Bonin MN, Rezende FM, Carvalho FE, Cucco DC, Silva RC (2011) Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genetics and Molecular Research 10, 2057–2064.
Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlajsLzK&md5=46617e6d43385d642e2a9b1b72fbacaeCAS | 21968622PubMed |

Pitel F, Faraut T, Bruneau G, Monget P (2010) Is there a leptin gene in chicken genome? Lessons from phylogenetics, bioinformatics and genomics. General and Comparative Endocrinology 167, 1–5.
Is there a leptin gene in chicken genome? Lessons from phylogenetics, bioinformatics and genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFGiu7k%3D&md5=c4b523cb517584630ee8d0b56ce67aa3CAS | 19854194PubMed |

Pöykkö S, Ukkola O, Kauma H, Savolainen MJ, Kesäniemi YA (2003) Ghrelin Arg51Gln mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects. Diabetologia 46, 455–458.

Prokop JW, Duff RJ, Ball HC, Copeland DL, Londraville RL (2012) Leptin and leptin receptor: analysis of a structure to function relationship in interaction and evolution from humans to fish. Peptides 38, 326–336.
Leptin and leptin receptor: analysis of a structure to function relationship in interaction and evolution from humans to fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKqsL%2FJ&md5=a40f36b752626ccbe48b5e8be2b7649eCAS | 23085324PubMed |

Richards MP, Poch SM (2003) Molecular cloning and expression of the turkey leptin receptor gene. Comparative Biochemistry and Physiology 136, 833–847.
Molecular cloning and expression of the turkey leptin receptor gene.Crossref | GoogleScholarGoogle Scholar | 14662306PubMed |

Sandercock DA, Hunter RR, Mitchell MA, Hocking PM (2006) Thermoregulatory capacity and muscle membrane integrity are compromised in broilers compared with layers at the same age or body weight. British Poultry Science 47, 322–329.
Thermoregulatory capacity and muscle membrane integrity are compromised in broilers compared with layers at the same age or body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWhtrY%3D&md5=15de089561541b3fdc81b48e98afa30aCAS | 16787856PubMed |

Soares JB, Leite-Moreira AF (2008) Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides 29, 1255–1270.
Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFemtLY%3D&md5=1bcc80a55b1a3886134b1f6ef8b3b37cCAS | 18396350PubMed |

Szczesna M, Zięba DA (2015) Phenomenon of leptin resistance in seasonal animals: the failure of leptin action in the brain. Domestic Animal Endocrinology 52, 60–70.
Phenomenon of leptin resistance in seasonal animals: the failure of leptin action in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFemu7o%3D&md5=10e9ca5bfec377e363a2106b7dca27d4CAS | 25863197PubMed |

Taouis M, Chen JW, Daviaud C, Dupont J, Derouet M, Simon J (1998) Cloning the chicken leptin gene. Gene 208, 239–242.
Cloning the chicken leptin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVels7k%3D&md5=103d41ca91b7bb0df26c357c31ec062eCAS | 9524275PubMed |

Twito T, Madeleine D, Perl-Treves R, Hillel J, Lavi U (2011) Comparative genome analysis with the human genome reveals chicken genes associated with fatness and body weight. Animal Genetics 42, 642–649.
Comparative genome analysis with the human genome reveals chicken genes associated with fatness and body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1emt7bO&md5=4f46b443a79f546d4d1a70fb3a8858c2CAS | 22035006PubMed |

Ukkola O, Ravussin E, Jacobson P, Pérusse L, Rankinen T, Tschöp M, Heiman ML, Leon AS, Rao DC, Skinner JS, Wilmore JH, Sjöström L, Bouchard C (2002) Role of ghrelin polymorphisms in obesity based on three different studies. Obesity Research 10, 782–791.
Role of ghrelin polymorphisms in obesity based on three different studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFeks7o%3D&md5=33dc80f77a6fe2511945a6dfb9b210a0CAS | 12181387PubMed |

Wang L, Tian Y, Mei X, Han R, Li G, Kang X (2015) SNPs in the adiponectin receptor 2 gene and their associations with chicken performance traits. Animal Biotechnology 26, 1–7.
SNPs in the adiponectin receptor 2 gene and their associations with chicken performance traits.Crossref | GoogleScholarGoogle Scholar | 25153449PubMed |

Woelfel RL, Owens CM, Hirschler EM, Martinez-Dawson R, Sams AR (2002) The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poultry Science 81, 579–584.
The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383ltVyqtw%3D%3D&md5=035d8c998c78aa778e76aac7c634f619CAS | 11989759PubMed |

Zhang B, Chen H, Guo Y, Zhang L, Zhao M, Lan X, Zhang C, Pan C, Hu S, Wang J, Lei C (2009) Associations of polymorphism within the GHSR gene with growth traits in Nanyang cattle. Molecular Biology Reports 36, 2259–2263.
Associations of polymorphism within the GHSR gene with growth traits in Nanyang cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrs7bJ&md5=26e8487f2135e0c81b1fec04b6dc90a8CAS | 19148773PubMed |