Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs

German D. Mendoza-Martínez A , Juan M. Pinos-Rodríguez B , Héctor A. Lee-Rangel C G , Pedro A. Hernández-García D , Rolado Rojo-Rubio E and Alejandro Relling F
+ Author Affiliations
- Author Affiliations

A Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, México D.F., Calzada del Hueso 1100, D.F., C.P. 04970, México.

B Centro de Biociencias, Universidad Autónoma de San Luis Potosí, México, km. 14.5 Carr. San Luis Potosí – Matehuala, C.P. 78321, San Luis Potosí, S.L.P, México.

C Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, México, km. 14.5 Carr. San Luis Potosí – Matehuala, C.P. 78321, San Luis Potosí, S.L.P, México.

D Centro Universitario UAEM-Amecameca, Universidad Autónoma del Estado de México, C.P. 56900, México.

E Centro Universitario UAEM-Temascaltepec, Universidad Autónoma del Estado de México, Estado de México, México.

F Facultad de Veterinaria, Universidad Nacional de La Plata, Argentina.

G Corresponding author. Email: hector.lee@uaslp.mx

Animal Production Science 56(7) 1194-1198 https://doi.org/10.1071/AN14824
Submitted: 18 September 2014  Accepted: 9 February 2015   Published: 10 April 2015

Abstract

The objective of this study was to evaluate the effects of the addition of two levels of calcium propionate on lamb performance and some carcass characteristics. Twenty-one male Creole lambs with an initial weight of 25.3 ± 3.3 kg were randomly assigned to one of the following treatments: 0, 10, and 20 g of calcium propionate/kg of diet (dry matter basis). Intake, daily gain, feed conversion, carcass weight, and rib eye area were not affected (P < 0.05) by calcium propionate addition. Ruminal fermentation was not altered (rumen pH, volatile fatty acids concentration, and fermentation pattern), and ruminal ammonia-N presented a quadratic response (P < 0.05). In fat from the longissimus dorsi muscle, oleic acid showed a linear decrease (P < 0.05) and α-linolenic presented a linear increment (P < 0.05). The addition of 10 or 20 g of calcium propionate in diets containing 350 g/kg grain and 100 g/kg molasses did not modify the productive performance of lambs or ruminal fermentation, and minor changes were detected in long-chain fatty acid in intramuscular fat.

Additional keywords: long-chain fatty acid, sheep.


References

AOAC (1999) ‘Official methods of analysis.’ 16th edn. (Association of Official Analytical Chemists: Arlington, VA)

Bas P, Berthelot V, Duvaux-Ponter C, Sauvant D, Schmidely P (2000) Effect of dietary propionate on fatty acid composition of lamb adipose tissues. Cahiers Options Méditerranéennes 52, 133–135.

Belanche A, Abecia L, Holtrop G, Guada JA, Castrillo C, Fuente G, Balcells J (2011) Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chime. Journal of Animal Science 89, 4163–4174.
Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SqtbnI&md5=37fbc63895758cc7c083016ba286fb4cCAS | 21724942PubMed |

Berthelot V, Bas P, Schmidely P, Duvaux-Ponter C (2001) Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Ruminant Research 40, 29–39.

Bradford BJ, Allen MS (2007) Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. The Journal of Nutrition 137, 326–330.

DeFrain JM, Hippen AR, Kalscheur KF, Patton RS (2005) Effects of feeding propionate and calcium salts of long-chain fatty acids on transition dairy cow performance. Journal of Dairy Science 88, 983–993.
Effects of feeding propionate and calcium salts of long-chain fatty acids on transition dairy cow performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFygtLw%3D&md5=ca4e6d7a92724b8bc26ecb8e092511e8CAS | 15738233PubMed |

Emmanuel B (1974) On the origin of rumen protozoan fatty acids. Biochimica et Biophysica Acta 337, 404–413.
On the origin of rumen protozoan fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkslClsb8%3D&md5=7ad9a7acf99a1ddda3679157646823b6CAS | 4462606PubMed |

Emmanuel B (1978) The relative contribution of propionate and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biochimica et Biophysica Acta 528, 239–246.
The relative contribution of propionate and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtlejtro%3D&md5=b514a1589a3b061aa9dc3cb07d151bc1CAS | 564207PubMed |

Erwin ES, Marco GJ, Emery E (1961) Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. Journal of Dairy Science 44, 1768–1771.
Volatile fatty acid analysis of blood and rumen fluid by gas chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XhvFKhtQ%3D%3D&md5=c116874f3bd405d90e78bef589e6e628CAS |

Ferraro SM, Mendoza GD, Miranda LA, Gutiérrez CG (2009) In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Animal Feed Science and Technology 154, 112–118.
In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aisLnF&md5=7c2290ba908441d3eed3597cced8516bCAS |

Fluharty FL, McClure KE, Solomon MB, Clevenger DD, Lowe GD (1999) Energy source and ionophore supplementation effects on lamb growth, carcass characteristics, visceral organ mass, diet digestibility, and nitrogen metabolism. Journal of Animal Science 77, 816–823.

Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226, 497–509.

French P, Stanton F, Lawless E, O’Riordan EG, Monahan FJ, Caffrey PJ, Moloney AP (2000) Fatty acid composition including conjugated linoleic acid of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. Journal of Animal Science 78, 2849–2855.

He ML, Yang WZ, Dugan MER, Beauchemin KA, McKinnon JJ, McAllister TA (2012) Substitution of wheat dried distillers grains with solubles for barley silage and barley grain in a finishing diet increases polyunsaturated fatty acids including linoleic and alpha-linolenic acids in beef. Animal Feed Science and Technology 175, 114–120.
Substitution of wheat dried distillers grains with solubles for barley silage and barley grain in a finishing diet increases polyunsaturated fatty acids including linoleic and alpha-linolenic acids in beef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVyiuro%3D&md5=7a121a94ffbcc0ddadfc94528b49e71bCAS |

Lee-Rangel HA, Mendoza GD, González SS (2012) Effect of calcium propionate and sorghum level on lamb performance. Animal Feed Science and Technology 177, 237–241.
Effect of calcium propionate and sorghum level on lamb performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKrtr7L&md5=3ae79a8a0a2a83095a76930b84163ae3CAS |

Leuvenink HGD, Bleumer EJB, Bongers LGM, VanBruchem J, VanDerHeide D (1997) Effect of short-term propionate infusion on feed intake and blood parameters in sheep. The American Journal of Physiology 272, E997–E1001.

Liu Q, Wang C, Yan WZ, Guo G, Yang XM, He DC, Dong KH, Huang YX (2010) Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. Journal of Animal Physiology and Animal Nutrition 94, 605–614.
Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgt7fN&md5=b72dd33540699c3e885d158d1546e840CAS | 19906132PubMed |

Loerch SC, Berger LL, Gianola D, Fahey GC (1983) Effects of dietary protein source and energy level on in situ nitrogen disappearance of various protein sources. Journal of Animal Science 56, 206–216.

McCullough H (1967) The determination of ammonia in whole blood by direct colorimetric method. Clinica Chimica Acta 17, 297–304.
The determination of ammonia in whole blood by direct colorimetric method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Wntbo%3D&md5=7dc52c18e9119b359bd0fe6ae552673aCAS |

McNamara JP, Valdez F (2005) Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. Journal of Dairy Science 88, 2498–2507.
Adipose tissue metabolism and production responses to calcium propionate and chromium propionate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCmsb0%3D&md5=940af255937461147992dd7e3117dc49CAS | 15956312PubMed |

Mendoza MGD, Britton RA, Stock RA (1993) Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. Journal of Animal Science 71, 1572–1578.

Moloney AP (1998) Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites. Livestock Production Science 56, 157–164.
Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites.Crossref | GoogleScholarGoogle Scholar |

Nozière P, Gachon S, Doreau M (2003) Propionate uptake by rumen microorganisms: the effect of ruminal infusion. Animal Research 52, 413–426.
Propionate uptake by rumen microorganisms: the effect of ruminal infusion.Crossref | GoogleScholarGoogle Scholar |

Oba M, Allen MS (2003) Extent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactating dairy cows. The Journal of Nutrition 133, 1005–1012.

Savary-Auzeloux IC, Majdouba L, LeFloc’h N, Ortigues-Marty I (2003) Effects of intraruminal propionate supplementation on nitrogen utilisation by the portal – drained viscera, the liver and the hindlimb in lambs fed frozen rye grass. The British Journal of Nutrition 90, 939–952.
Effects of intraruminal propionate supplementation on nitrogen utilisation by the portal – drained viscera, the liver and the hindlimb in lambs fed frozen rye grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFWks7s%3D&md5=4bff0cf4b4d0c9aa4c708ad9138dedbdCAS | 14667187PubMed |

Shantha NC, Decker EA, Hennig B (1993) Comparison of methylation methods for the quantitation of conjugated linoleic acid isomers. Journal of AOAC International 76, 644–649.

Sheperd AC, Combs DK (1998) Long-term effects of acetate and propionate on voluntary feed intake by midlactation cows. Journal of Dairy Science 81, 2240–2250.
Long-term effects of acetate and propionate on voluntary feed intake by midlactation cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVCmtLw%3D&md5=b6ac0a263bfb0d6ec09637ca036ba81cCAS | 9749390PubMed |

Silva SR, Gomes MJ, Días-da-Silva A, Gil LF, Azevedo JM (2005) Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. Journal of Animal Science 83, 350–357.

Smith SB, Crouse JD (1984) Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. The Journal of Nutrition 114, 792–800.

Steel GDR, Torrie JH, Dickey DA (1997) ‘Principles and procedures of statistics: a biometrical approach.’ 3rd edn. (McGraw-Hill, New York, NY)

Trabue S, Scoggin K, Tjandrakusuma S, Rasmussen MA, Reilly PJ (2007) Ruminal fermentation of propylene glycol and glycerol. Journal of Agricultural and Food Chemistry 55, 7043–7051.
Ruminal fermentation of propylene glycol and glycerol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotF2gtLY%3D&md5=b1b894a809b00b39884f00e7d2bfe7edCAS | 17655323PubMed |

van Houtert MFJ, Nolan JV, Leng RA (1993) Protein, acetate and propionate for roughage-fed lambs. 2. Nutrient kinetics. Animal Production 56, 369–378.
Protein, acetate and propionate for roughage-fed lambs. 2. Nutrient kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVyku7c%3D&md5=3f3394135f55de312f98a5e5c13f24c3CAS |

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonostarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
Methods for dietary fiber, neutral detergent fiber, and nonostarch polysaccharides in relation to animal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnvVCltA%3D%3D&md5=e5c1ebe000070887297cc2a8c330cfc1CAS | 1660498PubMed |

Viswanathan TV, Fontenot JP, Baker SM, Meacham V (2007) Effects of feeding crab processing waste and other protein supplements on growth and ruminal characteristics of steers fed high-roughage diets. The Professional Animal Scientist 23, 482–489.

Whitney MB, Hess BW, Burgwald-Balstad LA, Sayer JL, Tsopito CM, Talbott CT, Hallford DM (2000) Effects of supplemental soybean oil level on in vitro digestion and performance of prepubertal beef heifers. Journal of Animal Science 78, 504–514.