Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

Potential of the application of epigenetics in animal production

Takafumi Gotoh
+ Author Affiliations
- Author Affiliations

Kuju Agricultural Research Center, Faculty of Agriculture, Kyushu University, Taketa 8780201, Japan. Email: gotoh@farm.kyushu-u.ac.jp

Animal Production Science 55(2) 145-158 https://doi.org/10.1071/AN14467
Submitted: 2 April 2014  Accepted: 5 June 2014   Published: 19 December 2014

Abstract

Our many current environmental challenges, including worldwide abnormal weather, global warming, and pollution, necessitate a new and innovative strategy for animal production for the next generation. This strategy should incorporate not only higher-efficiency production, but also advanced biological concepts and multi-functional agricultural techniques, into environmentally friendly systems. Recent research has discovered a unique phenomenon referred to as ‘foetal and neonatal programming’, which is based on ‘the developmental origins of health and disease (DOHaD)’ concept. These studies have shown that alterations in foetal and early postnatal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology and metabolism of affected animals during adult life. Ruminants fill an important ecological niche that capitalises on the symbiotic relationship between fibre-fermenting ruminal microbes and the mammalian demand for usable nutrients. The timing of the perturbation in maternal nutrient availability plays an important role in determining the effect that the foetal and neonatal programming will have on the developing placenta or foetus and offspring performance. Developmental programming through nutritional manipulations may help the ruminant, as an effective grass–protein converter, fulfil its production potential.

Additional keywords: cattle, metabolic programming, production system, ruminant.


References

Aalinkeel R, Srinivasan M, Song F, Patel MS (2001) Programming into adulthood of islet adaptatins induced by early nutritional intervention in the rat. American Journal of Physiology. Endocrinology and Metabolism 281, E640–E648.

Abdelsamei AH, Fox DG, Tedeschi LO, Thonney ML, Ketchien DJ, Stouffer JR (2005) The effect of milk intake on forage intake and growth of nursing calves. Journal of Animal Science 83, 940–947.

Albrecht E, Gotoh T, Ebara F, Xu JX, Viergutz T, Nuernberg G, Maak S, Wegner J (2011) Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Science 89, 13–20.
Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrjvFehtA%3D%3D&md5=e5a0de2dd45e2ea2bc52dfb8edd808dbCAS | 21481546PubMed |

Avram MM, Avram AS, James WD (2007) Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. Journal of the American Academy of Dermatology 56, 472–492.
Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell.Crossref | GoogleScholarGoogle Scholar | 17317490PubMed |

Bach A (2012) Optimizing performance of the offspring: nourishing and managing the dam and post natal calf for optimal lactation, reproduction, and immunity. Journal of Animal Science 90, 1835–1845.
Optimizing performance of the offspring: nourishing and managing the dam and post natal calf for optimal lactation, reproduction, and immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWgsbo%3D&md5=49eb92403c39a8110182def16917ba44CAS | 21926322PubMed |

Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wale. Lancet 327, 1077–1081.
Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wale.Crossref | GoogleScholarGoogle Scholar |

Barker DJP, Eriksson JG, Forsén T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology 31, 1235–1239.
Fetal origins of adult disease: strength of effects and biological basis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FosVOksw%3D%3D&md5=113d506ae58170644e911fb272459b52CAS |

Bartol FF, Wiley AA, Bagnell CA (2008) Epigenetic programming of porcine endometrial function and the lactocrine hypothesis. Reproduction in Domestic Animals 43, 273–279.
Epigenetic programming of porcine endometrial function and the lactocrine hypothesis.Crossref | GoogleScholarGoogle Scholar | 18638135PubMed |

Bauman DE, Eiseman JH, Currie WB (1982) Hormonal effects on partitioning of nutrients for tissue growth: role of growth hormone and prolactin. Federation Proceedings 41, 2538–2544.

Bayol SA, Simbi BH, Bertrand JA, Stickland NC (2008) Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. The Journal of Physiology 586, 3219–3230.
Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVSmtr8%3D&md5=9f0851d2deaafc4fa6b373b362580ae9CAS | 18467362PubMed |

Bocquier F, González-García E (2010) Sustainability of ruminant agriculture in the new context: feeding strategies and features of animal adaptability into the necessary holistic approach. Animal 4, 1258–1273.
Sustainability of ruminant agriculture in the new context: feeding strategies and features of animal adaptability into the necessary holistic approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFyqsw%3D%3D&md5=ac5d38330092775993ac2ac65fda7c8fCAS | 22444621PubMed |

Boersma GJ, Bale TL, Casanello P, Lara HE, Lucion AB, Suchechki D, Tamashiro KL (2014) Long-term impact of early life events on physiology and behaviour. Journal of Neuroendocrinology 26, 587–602.
Long-term impact of early life events on physiology and behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSru77K&md5=dc49ab0b35267f4c8179b8e6e110d7baCAS | 24690036PubMed |

Bonnet M, Cassar-Mlek I, Chilliard Y, Picard B (2010) Ontogenesis of muscle and adipose tissues and their interaction in ruminants and other species. Animal 4, 1093–1109.
Ontogenesis of muscle and adipose tissues and their interaction in ruminants and other species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVajsbk%3D&md5=d401dc36173b2d243691498872fba163CAS | 22444612PubMed |

Brameld MI, Mostyn A, Dandrea J, Stephenson TJ, Dawson JM, Buttery PJ, Symonds ME (2000) Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. The Journal of Endocrinology 167, 429–437.
Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVCquw%3D%3D&md5=e3dd4e4572f43a7289b5f320038ee209CAS |

Canani RB, Di Costanzo M, Leone L, Bedogni G, Brambilla P, Cianfarani S, Nobili V, Pietrobelli A, Agostoni C (2011) Epigenetic mechanisms elicited by nutrition in early life. Nutrition Research Reviews 24, 198–205.
Epigenetic mechanisms elicited by nutrition in early life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslyns7c%3D&md5=a371d30bcc654a10330343d1cd66b17dCAS | 22008232PubMed |

Capper JL, Bauman DE (2013) The role of productivity in imporving the environmental sustainability of ruminant production systems. Annual Review of Animal Biosciences 1, 469–489.
The role of productivity in imporving the environmental sustainability of ruminant production systems.Crossref | GoogleScholarGoogle Scholar | 25387028PubMed |

Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, Hauguel de Mouzon S, Amini SB (2009) Perinatal risk factors for childhood obesity and metabolic dysregulation. The American Journal of Clinical Nutrition 90, 1303–1313.
Perinatal risk factors for childhood obesity and metabolic dysregulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlentb%2FP&md5=2b61d03924d8bf12a80754a9a1ae2e23CAS | 19759171PubMed |

Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Advances in Nutrition 1, 8–16.
Epigenetics: a new bridge between nutrition and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2ltbc%3D&md5=a76b6277b3c222263aca364bd8e756a3CAS | 22043447PubMed |

Close WH, Pettigrew JF (1990) Mathematical models of sow reproduction. Journal of Reproduction and Fertility. Supplement 40, 83–88.

DeNise SK, Robinson JD, Stott GH, Armstrong DV (1989) Effects of passive immunity on subsequent production in dairy heifers. Journal of Dairy Science 72, 552–554.
Effects of passive immunity on subsequent production in dairy heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7pvVWquw%3D%3D&md5=8dbd9c25ec5f71dedaef30f51485c3f1CAS | 2703576PubMed |

Du M, Zhu M (2009) Capter 4. Fetal programming of skeletal muscle development. In ‘Applied muscle biology and meat science’. (Eds M Du, RJ McCormick) pp. 81–96. (CRC Press Taylor&Francis Group LLC: Boca Raton)

Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW (2010a) Fetal programming of skeletal muscle development in fuminant animals. Journal of Animal Science 88, E51–E60.
Fetal programming of skeletal muscle development in fuminant animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOisw%3D%3D&md5=f7c5247367f337009a475effe6516268CAS | 19717774PubMed |

Du M, Yan X, Tong JF, Zhao JX, Zhu MJ (2010b) Maternal obesity, inflammation, and fetal skeletal muscle development. Biology of Reproduction 82, 4–12.
Maternal obesity, inflammation, and fetal skeletal muscle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wgsr3L&md5=8769b9ab86862fe3bad01d5c4b219bc2CAS | 19516021PubMed |

Du M, Zhao JX, Yan X, Huang Y, Nicodemus V, Yue W, McCormick RJ, Zhu MJ (2011) Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathywas. Journal of Animal Science 89, 583–590.
Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathywas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFSmsr8%3D&md5=e1b3301796eee0412dd8948e8cf45fefCAS | 20852073PubMed |

Du M, Huang A, Das K, Yang Q, Duarte MS, Dodson MV, Zhu MJ (2013) Manipulating mesenchymal progenitor cell differntiatin to optimize performance and carcass value of beef cattle. Journal of Animal Science 91, 1419–1427.
Manipulating mesenchymal progenitor cell differntiatin to optimize performance and carcass value of beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFKnu7o%3D&md5=20088953a17393a2d8a9d2280e7ab4b9CAS | 23100595PubMed |

Dwyer CM, Stickland NC, Fletcher JM (1994) The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. Journal of Animal Science 72, 911–917.

Eastell R, Lambert H (2002) Diet and healthy bones. Calcified Tissue International 70, 400–404.
Diet and healthy bones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Knt7g%3D&md5=633859209e2a5e2536a2d3f8ad378a98CAS | 11960202PubMed |

Ehara T, Kamei Y, Takahashi M, Yuan X, Kanai S, Tamura E, Tanaka M, Yamazaki T, Miura S, Ezaki O, Suganami T, Okano M, Ogawa Y (2012) Role of DNA Methylation in the regulation of lipogenic glycerol-3-phosophate acyltransferase 1 gene expression in the mouse neonatal liver. Diabetes 61, 2442–2450.
Role of DNA Methylation in the regulation of lipogenic glycerol-3-phosophate acyltransferase 1 gene expression in the mouse neonatal liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVent7fI&md5=3aac275b07b01b54c28c7d9f4c56e198CAS | 22721968PubMed |

Erbay E, Park IH, Nuzzi PD, Schoenherr CJ, Chen J (2003) IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. The Journal of Cell Biology 163, 931–936.
IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVaksrs%3D&md5=608822f17c4ce6888b7765cb64845c73CAS | 14662739PubMed |

Eriksson JG, Forsen T, Tuomilehto J, Jaddoe VW, Osmond C, Barker DJ (2002) Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 45, 342–348.
Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVeju78%3D&md5=c1096e8ac13c88507e11e57e90f17742CAS | 11914739PubMed |

Estêvão MD, McKenzie SH, Ribeiro L, Tegesen MP, Sancho T, Power DM (2012) Effect of maternal under-nutrition on late gestation on muscle and bone development in fetal sheep. Baltic Journal of Comparative & Clinical Systems Biology 1, 38–52.
Effect of maternal under-nutrition on late gestation on muscle and bone development in fetal sheep.Crossref | GoogleScholarGoogle Scholar |

FAO (2013) Tacking climate change through livestock: a global assessment of emissions and mitigation opportunities. Available at http://www.fao.org/news/story/en/item/197623/icode/. [Verified 21 March 2014]

FAOSTAT (2009) FAO online database. Time-series and cross sectional data relating to food and agriculture for some 200 countries. Available at http://faostat.fao.org/site/573/default.aspx#ancor. [Verified 21 November 2009]

Faust IM, Johnson PR, Hirsch J (1980) Long-term effects of early nutritional experience on the development of obesity in the rat. The Journal of Nutrition 110, 2027–2034.

Funston RN, Summers AF (2013) Epignetics: Setting up lifetime production of beef cows by managing nutrition. Annual Review of Animal Biosciences 1, 339–363.
Epignetics: Setting up lifetime production of beef cows by managing nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M3ntlOgtA%3D%3D&md5=fbbaf5b2951c7284dc318f7c4d09048bCAS | 25387023PubMed |

Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736.
Living with the past: evolution, development, and patterns of disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFajurw%3D&md5=0452d0a2555cecdd080dc8a47a80bb79CAS | 15375258PubMed |

Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. American Journal of Human Biology 19, 1–19.
Early life events and their consequences for later disease: a life history and evolutionary perspective.Crossref | GoogleScholarGoogle Scholar | 17160980PubMed |

Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ (2009) Genetic interaction of PGE2 and WNT signalling regulates development specification of stem cells and regeneration. Cell 136, 1136–1147.
Genetic interaction of PGE2 and WNT signalling regulates development specification of stem cells and regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFSnt7o%3D&md5=9a78a2f7c0787e05476fcee4a1494274CAS | 19303855PubMed |

Gotoh T (2010) Metabolic imprinting effects in grass-fed Wagyu (Japanese Black) beef production. FASEB J. 24, 90.4 [Abstract]

Gotoh T, Fumita T, Etoh T, Shiotsuka Y, Hayashi K, Wegner J, Iwamoto H (2006) Influence of metabolic imprinting on meat quality: impact of feed quality during early growth period on intramuscular adipogenesis in Holstein steers. In ‘The proceeding of XIIth AAAP animal science congress’. p. 50 [Abstract]. (Korean Society of Animal Science & Technology, Federation of Korean Societies of Animal Sciences: Busan)

Gotoh T, Albrecht E, Teuscher F, Kawabata K, Sakashita K, Iwamoto H, Wegner J (2009) Differences in muscle and fat accretion in Japanese Black and European cattle. Meat Science 82, 300–308.
Differences in muscle and fat accretion in Japanese Black and European cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zisFGhsA%3D%3D&md5=74eec7f3cdd8e1bc3aeff7eca9f8f271CAS | 20416730PubMed |

Gotoh T, Etoh K, Saitoh K, Metoki K, Kaneda S, Abe T, Etoh T, Shiotsuka Y, Fujino R, Matsuda K, Suzuki H, Hasebe H, Ebara F, Wegner J, Tabata S (2010) Metabolic imprinting effect in beef production: influence of nutrition manipulation during an early growth stage on carcass characteristics and intramuscular fat content of longissimus muscle in Wagyu (Japanese Black). In ‘The proceeding of the 3rd EAAP (European Federation of Animal Science) international syposium on energy and protein metabolism and nutrition’. (Ed. G Matteo Crovetto) pp. 669–670 [Abstract]. (Waneningen Academic Publishers: Waneningen, The Netherlands)

Gotoh T, Etoh K, Saitoh K, Sakuma H, Sakuma K, Kaneda S, Abe T, Etoh T, Shiotsuka Y, Matsuda K, Suzuki H, Hasebe H, Ebara F, Saitoh A, Wegner J (2011) Metabolic imprinting effect in beef production: effects of nutrition manipulation during an early growth stage on fatty acid composition in longissimus muscles of Wagyu (Japanese Black). In ‘The proceedings of the 7th world congress on developmental origins of health and disease’. [Abstract] (International Society for Developmental Origins of Health and Disease, and Oregon Health & Science University: Portland, OR)

Gotoh T, Terao H, Etoh K, Khounsaknalath S, Saito K, Sakuma K, Abe T, Etoh T, Shiotsuka Y, Saito A, Takahashi H, Furuse M (2014) Influence of different nutrients and feeding amount of milk replacer on growth and physiological aspects in Wagyu (Japanese Black ) calves. In ‘The proceedings of the XVIth AAAP animal science congress’. p. 110 [Abstract]. (Indonesian Society of Animal Science, Yogyakarta)

Greenwood PL, Hunt AS, Hernanson JW, Bell AW (1998) Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. Journal of Animal Science 76, 2354–2367.

Greenwood PL, Sleoetis RM, Bell AW, Hemanson JW (1999) Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reproduction, Fertility and Development 11, 281–291.
Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czovFentA%3D%3D&md5=4be9b96b68c2cd4938ceb94d45b6f1e4CAS |

Greenwood PL, Hunt AS, Hernanson JW, Bell AW (2000) Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. Journal of Animal Science 78, 50–61.

Greenwood PL, Hunt AS, Hernanson JW, Slepetis RM, Finnerty KD, Alston C, Beermann DH, Bell AW (2002) Effects of birth weight and postnatal nutrition on neonatal sheep: III. Regulation of energy metabolism. Journal of Animal Science 80, 2850–2861.

Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes & Development 15, 807–826.
Regulation of translation initiation by FRAP/mTOR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVams7k%3D&md5=822bd478b624ae87abc37385ea0437c7CAS |

Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. British Medical Bulletin 60, 5–20.
The thrifty phenotype hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fot12mug%3D%3D&md5=1c98390a6e2985c2ed60f8e3bc4a9a65CAS | 11809615PubMed |

Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and inafant growth and impaired glucose tolerance at 64. BMJ 303, 1019–1022.
Fetal and inafant growth and impaired glucose tolerance at 64.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2Fmtlakuw%3D%3D&md5=cf4f0fbc710f7958224e6f1059e48194CAS | 1954451PubMed |

Hanson M, Gluckman P (2011) Developmental origins of noncommunicable disease: population and public health implications. The American Journal of Clinical Nutrition 94, 1754S–1758S.
Developmental origins of noncommunicable disease: population and public health implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhtr7P&md5=3c7b09ef0951aa8495c6536c2aa2ac28CAS | 21525196PubMed |

Haugaard CT, Bauer MK (2001) Rodent models of intarauterine growth restriction. Scandinavian Journal of Laboratory Animal Science 28, 10–22.

Holliday R, Grigg GW (1993) DNA methylation and mutation. Mutation Research 285, 61–67.
DNA methylation and mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtF2js78%3D&md5=595558cbc5d13ae6d2299bd23812185aCAS | 7678134PubMed |

Holt RIG (2002) Fetal programming of the growth hormone-insulin-like growth factor axis. Trends in Endocrinology and Metabolism 13, 392–397.
Fetal programming of the growth hormone-insulin-like growth factor axis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVShsr8%3D&md5=c5713ab4321343028a004c567c85c65cCAS |

Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics & Development 11, 547–553.
New aspects of Wnt signaling pathways in higher vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Krt7s%3D&md5=8733b927dbeab61cc632c2fedfefdbe6CAS |

Itoh H, Yura S, Sagawa N, Kanayama N, Konihi I, Hamamatsu Birth Cohort for Mothers and Children (HBC) Study Team (2011) Neonatal exposure to leptin reduces glucose tolerance in adult mice. Acta Physiologica 202, 159–164.
Neonatal exposure to leptin reduces glucose tolerance in adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFGls7s%3D&md5=b9defbeabc6574cd01f98d00a3db89e5CAS | 21352506PubMed |

Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33, 245–254.
Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsV2kt7s%3D&md5=69436095c83cb1339cbe16667c09cfecCAS | 12610534PubMed |

Kouzarides T (2007) Chromatin modifications and their function. Cell 128, 693–705.
Chromatin modifications and their function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju7Y%3D&md5=ea9524520e25cdb238f14fafe1b00549CAS | 17320507PubMed |

Larson DM, Martin JL, Adams DC, Funston RN (2009) Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. Journal of Animal Science 87, 1147–1155.
Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislaqs74%3D&md5=65bc7fd991b6828616b73e500e1aa967CAS | 18997078PubMed |

Levin BE (2000) The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits. Obesity Research 8, 342–347.
The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FisFGjtQ%3D%3D&md5=cf22b6fafb9b9c7797f67d2f3328a325CAS | 10933311PubMed |

Li G, Zhang W, Baker MS, Laritsky E, Mattan-Hung N, Yu D, Kunde-Ramamoorthy G, Simerly RB, Chen R, Shen L, Waterland RA (2014) Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus. Human Molecular Genetics 23, 1579–1590.
Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus.Crossref | GoogleScholarGoogle Scholar | 24186871PubMed |

Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. The Journal of Nutrition 135, 1382–1386.

Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW, Ford SP (2010) Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. Journal of Animal Science 88, 3546–3553.
Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsL7J&md5=c3409974debdc80ee5abd7345774a118CAS | 20622177PubMed |

Ma J, Prince AL, Bader D, Hu M, Ganu R, Baquero K, Blundell P, Harris RA, Frias AE, Grove KL, Aagaard KM (2014) High-fat maternal diet during pregnancy persistently alters the offspeing microbiome in a primate model. Nature communications 5, 3889
High-fat maternal diet during pregnancy persistently alters the offspeing microbiome in a primate model.Crossref | GoogleScholarGoogle Scholar | 24846660PubMed |

Martin IJ, Vonnahme KA, Adam DC, Lardy GP, Funston RN (2007) Effects of dam nutrition on growth and reproductive performance of heifer calves. Journal of Animal Science 85, 841–847.
Effects of dam nutrition on growth and reproductive performance of heifer calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wktbg%3D&md5=e01f50b60771fab53388951dea470becCAS |

Mathers JC, McKay JA (2009) Epigenetics-potential contribution to fetal programming. Advances in Experimental Medicine and Biology 646, 119–123.
Epigenetics-potential contribution to fetal programming.Crossref | GoogleScholarGoogle Scholar | 19536670PubMed |

McMillen C, Adam C, Muehlhaueusler BS (2005) Early origins of obesity: programming the appetite regulatory system. The Journal of Physiology 565, 9–17.
Early origins of obesity: programming the appetite regulatory system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyrurY%3D&md5=1b589f3e67fbd708ee5135a46aae04caCAS |

McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90.
Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFygur0%3D&md5=c788d56ae01f3a1b52d2cc1bdbc884b2CAS | 9139826PubMed |

Moallem U, Werner D, Lehrer H, Zachut M, Livshitz L, Yakoby S, Shamay A (2010) Longterm effects of ad libitum whole milk prior to weaning and prepubertal protein supplementation on skeletal growth rate and first-lactation milk production. Journal of Dairy Science 93, 2639–2650.
Longterm effects of ad libitum whole milk prior to weaning and prepubertal protein supplementation on skeletal growth rate and first-lactation milk production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVahs7nK&md5=28ff3d00e05ae2272ad2aebcf3a4bc93CAS | 20494173PubMed |

Ozanne SE (2001) Metabolic programming in animals. British Medical Bulletin 60, 143–152.
Metabolic programming in animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fot12msA%3D%3D&md5=78e225a553ed279675e877ff61d71f93CAS | 11809623PubMed |

Poore KR, Hollis LJ, Murray RJS, Warlow A, Brewin A, Fulford L, Cleal JK, Lillycrop KA, Burdge GC, Hanson MA, Green LR (2014) Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep. PLoS ONE 9, e90994
Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep.Crossref | GoogleScholarGoogle Scholar | 24603546PubMed |

Quigley SP, Kleemann DO, Kakar MA, Owens JA, Nattrass GS, Maddocks S, Walker SK (2005) Myogenesis in sheep is altered by maternal feed intake during the peri-conception period. Animal Reproduction Science 87, 241–251.
Myogenesis in sheep is altered by maternal feed intake during the peri-conception period.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzhvFyrsA%3D%3D&md5=a3e64da39ed1c5279cb61bdea1414347CAS | 15911174PubMed |

Raeth-Knight M, Chester-Jones H, Hayes S, Linn J, Larson R, Ziegler D, Broadwater N (2009) Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation. Journal of Dairy Science 92, 799–809.
Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kisbg%3D&md5=e0193e959f61536f5ee0d9adc33a5e72CAS | 19164694PubMed |

Randhawa R, Cohen P (2005) The role of the insulin-like growth factor system in prenatal growth. Molecular Genetics and Metabolism 86, 84–90.
The role of the insulin-like growth factor system in prenatal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOksb%2FJ&md5=5b03bac50c46a90f187f56e9207f4966CAS | 16165387PubMed |

Robelin J (1981) Cellularity of bovine adipose tissues: developmetal changes from 15 to 65 percent mature weight. Journal of Lipid Research 22, 452–457.

Robelin J, Chilliard Y (1989) short-term and long-term effects of early nutritional deprivation on adipose tissue growth and metabolism in calves. Journal of Dairy Science 72, 505–513.
short-term and long-term effects of early nutritional deprivation on adipose tissue growth and metabolism in calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7pvVWqtA%3D%3D&md5=bce1be2f5b5eb1e963ddb4ab3677d8e5CAS | 2703573PubMed |

Robinson DL, Cafe LM, Greenwood PL (2013) Developmental programming in cattle: consequences for growth, efficiency, carcass, muscle and beef quality characteristics. Journal of Animal Science 91, 1428–1442.
Developmental programming in cattle: consequences for growth, efficiency, carcass, muscle and beef quality characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFKnu7s%3D&md5=1be84e013c3d66186f8c6544062d86bdCAS | 23230118PubMed |

Roosevelt M (2006) The grass-fed revolution. Beef raised wholly on pasture, rather than grain-fed in feedlots, may be better for your health- and for the planet. Time 167, 76–78.

Russell R, Oteruelo FT (1981) An ultrastructuaral study of the differentiation of skeletal muscle in the bovine fetus. Anatomy and Embryology 162, 403–417.
An ultrastructuaral study of the differentiation of skeletal muscle in the bovine fetus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2FitVGjsQ%3D%3D&md5=065b44750da34365a4680e482d7776c1CAS | 7347494PubMed |

Scheffler JM, McCann MA, Greiner SP, Jiang H, Hanigan MD, Bridges GA, Lake SL, Gerrad DE (2014) Early metabolic imprinting events increase marbling scores in fed cattle. Journal of Animal Science 92, 320–324.
Early metabolic imprinting events increase marbling scores in fed cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nur8%3D&md5=4916e558432361d03e4c5018f566cedaCAS | 24243903PubMed |

Schoonmaker J (2013) Effect of marternal nutrition on calf health and growth. In ‘The proceedings of tri-state dairy nutrition conference’ pp. 63–80. (Ohio State, Purdue and Michigan State Universities: Fort Wayne, IN)

Sejrsen K, Purup S (1997) Influence of prepubertal feeding level on milk yield potential of dairy heifers. Journal of Animal Science 75, 828–835.

Sithyphone K, Yabe M, Horita H, Hayashi K, Fumita T, Shiotsuka Y, Etoh T, Ebara F, Gotoh T (2011) Comparison of feeding systems: feed cost, palatability and environmental impact among hay-fattened beef, consistent grass-only-fed beef and conventional marbled beef in Wagyu (Japanese Black cattle). Animal Science Journal 82, 352–359.
Comparison of feeding systems: feed cost, palatability and environmental impact among hay-fattened beef, consistent grass-only-fed beef and conventional marbled beef in Wagyu (Japanese Black cattle).Crossref | GoogleScholarGoogle Scholar | 21729217PubMed |

Sithyphone K, Fujimura R, Etoh K, Saito K, Sakuma K, Kaneda K, Abe T, Etoh T, Shiotsuka Y, Hasebe H, Hasebe H, Maak S, Albrecht E, Takahashi H, Saito A, Gotoh T (2013) Metabolic imprinting effect in beef production: influence of nutrition manipulation during an early growth stage on PPARγ2 and PMRT5 expressions in the longissimus muscle in Wagyu (Japanese Black). In’The proceedings of the 8th developmental origins of health and disease (DOHaD)’. p. 566 [Abstract]. (Cambridge University Press: Singapore)

Srinivasan M, Laychock SG, Hill DJ, Patel MS (2003) Neonatal nutrition: metabolic programming of pancreatic islets and obesity. Experimental Biology and Medicine 228, 15–23.

Swatland HJ (1973) Muscle growth in the fetal and neonatal pig. Journal of Animal Science 37, 536–545.

Tatara MR (2008) Neonatal programming of skeletal development in sheep is mediated by somatotrophic axis function. Experimental Physiology 93, 763–772.
Neonatal programming of skeletal development in sheep is mediated by somatotrophic axis function.Crossref | GoogleScholarGoogle Scholar | 18263656PubMed |

Tong JF, Yang X, Zhu MJ, Ford SP, Nathanielsz PW, Du M (2009) Maternal obesity downregulates myogenesis and β-catenin signaling in fetal skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism 296, E917–E924.
Maternal obesity downregulates myogenesis and β-catenin signaling in fetal skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVyhtbs%3D&md5=70414db62c3237feafe1a24d54e291aaCAS | 19176350PubMed |

Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: Impact on health and disease. Endocrinology Reviews 27, 762–778.
Adipose tissue-derived factors: Impact on health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Wrug%3D%3D&md5=49e0d860bbd43cfc1d2151d9b45a7850CAS |

Van Amburgh M, Lopez DJ (2013) A brief review of the developmental role of colostrum in neonates. In ‘The Proceedings of Minnesota Dairy Health Conference’. pp. 12–18. (University of Minnesota: Minneapolis, MN)

Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M (2005) Neonatal leptin treatment reverses development programming. Endocrinology 146, 4211–4216.
Neonatal leptin treatment reverses development programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmurnM&md5=d25cb7e6293f076195fa4e0c03f1b225CAS | 16020474PubMed |

Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M (2008) The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology 149, 1906–1913.
The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVeqsb4%3D&md5=135b7bd2cd41400bd8647bb8bd872da5CAS | 18187552PubMed |

Vonnahme KA (2012) How the maternal environment impacts fetal and placental development: implications for livestock production. Animal Reproduction 9, 789–797.

Ward SS, Stickland NC (1991) Why are slow and fast muscles differentially affected during prenatal undernutrition? Muscle Nerve 14, 259–267.

Waterland RA (2012) Nutritional epigenetics. In’Present knowledge in nutrition’. 10th edn. (Eds JW Erdman Jr, IA Macdonald, SH Zeisel) pp. 14–26. (International Life Sciences Institute; John Wiley & Sons: Singapore)

Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. The American Journal of Clinical Nutrition 69, 179–197.

Waterland RA, Kellermayer R, Rached M-T, Tatevian N, Gomes MV, Zhang J, Zhang L, Chakravarty A, Zhu W, Laritsky E, Zhang W, Wang X, Shen L (2009) Epigenomic profiling indicates a role for DNA methylation in early postnatal live development. Human Molecular Genetics 18, 3026–3038.
Epigenomic profiling indicates a role for DNA methylation in early postnatal live development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVamsbg%3D&md5=e563c705efcd6f4094294c500e17e123CAS | 19457928PubMed |

Weaver ICG, Cervoni N, Champagne FA, Alessio ACD, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7, 847–854.
Epigenetic programming by maternal behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVamt7c%3D&md5=17436139d30f2c453829792d785c021bCAS |

Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakano K, Kawamura M, Takemura M, Kakui K, Ogawa Y, Fujii S (2005) Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metabolism 1, 371–378.
Role of premature leptin surge in obesity resulting from intrauterine undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslajsL8%3D&md5=83bf9af919a4e5e6200e6073aa847cc8CAS | 16054086PubMed |

Zeisel SH (2009) Epigenetics mechanisms for nutrition determinants of later health outcomes. The American Journal of Clinical Nutrition 89, 1488S–1493S.
Epigenetics mechanisms for nutrition determinants of later health outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1OrtLs%3D&md5=2aa7fe8a8cfffa5ea9f03f110e31559cCAS | 19261726PubMed |

Zhu MJ, Ford SP, Nathanielsz PW, Du M (2004) Effect of maternal nutrient restriction in sheep on the development of feta skeletal muscle. Biology of Reproduction 71, 1968–1973.
Effect of maternal nutrient restriction in sheep on the development of feta skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsr3L&md5=600eb193f81ac201dd13d7f55ab35e19CAS | 15317692PubMed |

Zhu MJ, Ford SP, Means WJ, Hess BW, Nthanielsz PW, Du M (2006) Maternal nutrient restriction affects properties of skeletal muscle in offspring. The Journal of Physiology 575, 241–250.
Maternal nutrient restriction affects properties of skeletal muscle in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslaitbo%3D&md5=decd67f677c54920300d452da899ac41CAS | 16763001PubMed |