Muscle metabolism in sheep and cattle in relation to high rigor temperature – overview and perspective
P. E. Strydom A and K. Rosenvold B CA Animal Production Institute, Agricultural Research Council, Private Bag X2, Irene, 0062, South Africa.
B ANZCO Foods Limited, Food & Solutions, Waitara, New Zealand.
C Corresponding author. Email: katja.rosenvold@anzcofoods.com
Animal Production Science 54(4) 510-518 https://doi.org/10.1071/AN13437
Submitted: 21 October 2013 Accepted: 17 January 2014 Published: 27 February 2014
Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND
Abstract
An increasing number of Australian slaughter plants were found not to meet the Meat Standards Australia (MSA) pH–temperature window, due to high rigor temperatures, particularly at plants where grain-fed animals were slaughtered. Hence, the red meat processing industry in Australia supported a research program focused on resolving this issue, as carcasses that do not meet the MSA pH–temperature window are excluded from MSA grading. This special issue of Animal Production Science describes the outcomes of a major program identifying ante- and post-mortem factors related to heat-induced toughening in both beef and sheep meat through literature reviews and targeted research to find interventions to prevent the impact of high rigor temperature on meat quality, particularly tenderness. This paper provides an overview of the outcomes of the research program, some of which require further research before implementation. It is suggested that an entire supply-chain approach be applied to establish the most efficient and cost-effective way of reducing the incidence of high rigor temperature.
References
Aalhus JL, Price MA (1991) Endurance-exercised growing sheep: I. Postmortem and histological changes in skeletal muscles. Meat Science 29, 43–56.| Endurance-exercised growing sheep: I. Postmortem and histological changes in skeletal muscles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlOitw%3D%3D&md5=a148ee91ecf95c55e66102412ae00e61CAS | 22060971PubMed |
Australian Lot Feeders’ Association (2013) Grain fed cattle numbers rise slightly. Media release, 17 May 2013. Australian Lot Feeders’ Association. Available at http://www.feedlots.com.au/images/MR/mr_mar13.pdf [Verified 5 February 2014]
Bernard C, Cassar-Malek I, Le Cunff M, Dubroeucq H, Renand G, Hocquette JF (2007) New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry 55, 5229–5237.
| New indicators of beef sensory quality revealed by expression of specific genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVKlt7g%3D&md5=f91551cd15f777975726e7b7c12223e7CAS | 17547415PubMed |
Borgschulte G, Kathirvel E, Herrera M, French SW, Morgan TR, Morgan K, Bottiglieri T (2008) Betaine treatment reverses insulin resistance and fatty liver disease without reducing oxidative stress or endoplasmic reticulum stress in an animal model of nafld. Gastroenterology 134, A-414–A-415.
| Betaine treatment reverses insulin resistance and fatty liver disease without reducing oxidative stress or endoplasmic reticulum stress in an animal model of nafld.Crossref | GoogleScholarGoogle Scholar |
Brown T, Gigiel AJ, Veronica M, Swain L, Higgins JA (1988) Immersion chilling of hot cut, vacuum packed pork primals. Meat Science 22, 173–188.
| Immersion chilling of hot cut, vacuum packed pork primals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFSiuw%3D%3D&md5=b2288c2de250680f79288abb870be84bCAS | 22055302PubMed |
Capper JL (2011) The environmental impact of beef production in the United States: 1977 compared with 2007. Journal of Animal Science 89, 4249–4261.
| The environmental impact of beef production in the United States: 1977 compared with 2007.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SqtbfN&md5=58d88679e0374f23c7f9e52518a970f4CAS | 21803973PubMed |
Chappell G (1993) Australian feedlots and overseas markets. In ‘Symposium: Recent Advances in Animal Nutrition in Australia’. Armidale, NSW. (Ed. D.J. Farrell). pp. 137–144. (University of New England: Armidale, NSW)
Chung J, Nguyen A-K, Henstridge DC, Holmes AG, Stanley Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA (2008) Hsp72 protects against obesity-induced insulin resistance. Proceedings of the National Academy of Sciences 105(5), 1739-1744.
Daly BL, Gardner GE, Ferguson DM, Thompson JM (2006) The effect of time off feed prior to slaughter on muscle glycogen metabolism and rate of pH decline in three different muscles of stimulated and non-stimulated sheep carcasses. Australian Journal of Agricultural Research 57, 1229–1235.
| The effect of time off feed prior to slaughter on muscle glycogen metabolism and rate of pH decline in three different muscles of stimulated and non-stimulated sheep carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeqsr7M&md5=78d7e290ba25ed0f23be96aea41ed49bCAS |
Department of Agriculture, Fisheries and Forestry (2005) ‘Australian agriculture and food stocktake.’ (Australian Government: Canberra)
Devine CE, Ellery S, Averill S (1984) Response of different types of Ox muscle to electrical stimulation. Meat Science 10, 35–51.
| Response of different types of Ox muscle to electrical stimulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFChsA%3D%3D&md5=e1ebe971581f7c985db0b3ac8c7b9dbfCAS | 22055994PubMed |
Devine CE, Wahlgren NM, Tornberg E (1999) Effect of rigor temperature on muscle shortening and tenderisation of restrained and unrestrained beef m. longissimus thoracis et lumborum. Meat Science 51, 61–72.
| Effect of rigor temperature on muscle shortening and tenderisation of restrained and unrestrained beef m. longissimus thoracis et lumborum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVWqtA%3D%3D&md5=0fa670a2c0be3f3e48dbef00926751beCAS | 22061537PubMed |
DiGiacomo K (2011) The physiological and metabolic responses to heat in ruminants. PhD Thesis, The University Of Melbourne, Vic., Australia.
DiGiacomo K, Simpson S, Leury BJ, Dunshea FR (2012) Dietary betaine improves physiological responses in sheep under chronic heat load in a dose dependent manner. Journal of Animal Science 90, 269
DiGiacomo K, Leury BJ, Dunshea FR (2014) Potential nutritional strategies for the amelioration or prevention of high rigor temperature in cattle – a review. Animal Production Science 54, 430–443.
| Potential nutritional strategies for the amelioration or prevention of high rigor temperature in cattle – a review.Crossref | GoogleScholarGoogle Scholar |
Dransfield E, Ledwith MJ, Taylor AA (1991) Effect of electrical stimulation, hip suspension and ageing on quality of chilled pig meat. Meat Science 29, 129–139.
| Effect of electrical stimulation, hip suspension and ageing on quality of chilled pig meat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbntlyhug%3D%3D&md5=c78fac6b85a9bb12ad9147e933e2c796CAS | 22061099PubMed |
Ferguson DM, Gerrard DE (2014) Regulation of post-mortem glycolysis in ruminant muscle. Animal Production Science 54, 464–481.
| Regulation of post-mortem glycolysis in ruminant muscle.Crossref | GoogleScholarGoogle Scholar |
Hocquette JF, Bernard-Capel C, Vidal V, Jesson B, Levéziel H, Renand G, Cassar-Malek I (2012) The GENOTEND chip: a new tool to analyse gene expression in muscles of beef cattle for beef quality prediction. BMC Veterinary Research 8, 135
| The GENOTEND chip: a new tool to analyse gene expression in muscles of beef cattle for beef quality prediction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2jsb3I&md5=9a9653b65ef22870da817b26e7e22bf3CAS | 22894653PubMed |
Honikel KO, Roncales P, Hamm R (1983) The influence of temperature on shortening and rigor onset in beef muscle. Meat Science 8, 221–241.
| The influence of temperature on shortening and rigor onset in beef muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhslOlu7k%3D&md5=083bb9d637249c1d6786ea2df6bc160fCAS | 22055561PubMed |
Hopkins DL, Thompson JM (2001) The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin. Meat Science 57, 1–12.
| The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslKltrg%3D&md5=44ece769c509c2ec60743751ec9ea15dCAS | 22061160PubMed |
Hopkins DL, Cassar JA, Toohey ES, Wynn PC (2007) Examination of pH in lot fed beef for Japan. Proceedings of the New Zealand Society of Animal Production 67, 436–440.
Hopkins DL, Ponnampalam EN, van de Ven RJ, Warner RD (2014) The effect of pH decline rate on the meat and eating quality of beef carcasses. Animal Production Science 54, 407–413.
| The effect of pH decline rate on the meat and eating quality of beef carcasses.Crossref | GoogleScholarGoogle Scholar |
Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. The Journal of Nutritional Biochemistry 23, 313–319.
| Molecular mechanisms of chromium in alleviating insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjslelsr4%3D&md5=245eca730f1e90b29db92edc2c87230fCAS | 22423897PubMed |
Hunt MC, Hedrick HB (1977) Histochemical and histological characteristics of bovine muscles from four quality groups. Journal of Food Science 42, 578–582.
| Histochemical and histological characteristics of bovine muscles from four quality groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1Skt7Y%3D&md5=0cce1bc778b3659e39bd412d698e07faCAS |
Hwang IH, Thompson JM (2001a) The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat Science 58, 135–144.
| The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wgurg%3D&md5=270f7e9f2075e49cd0428af203c46a10CAS | 22062108PubMed |
Hwang IH, Thompson JM (2001b) The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle. Meat Science 58, 167–174.
| The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wgurc%3D&md5=40939faba202cd6c32db4d2d60e5d1ecCAS | 22062112PubMed |
Hwang IH, Devine CE, Hopkins DL (2003) The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness – a review. Meat Science 65, 677–691.
| The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVOnsLg%3D&md5=33d6c703a2229fe4940cd9db220c0b32CAS | 22063428PubMed |
Jacob RH, Hopkins DL (2014) Techniques to reduce the temperature of beef muscle early in the post mortem period – a review. Animal Production Science 54, 482–493.
| Techniques to reduce the temperature of beef muscle early in the post mortem period – a review.Crossref | GoogleScholarGoogle Scholar |
Jacob RH, Beatty DT, Warner RD (2014a) A preliminary study into the use of ‘heat pipes’ to prevent high rigor temperature in beef carcasses by increasing cooling rate. Animal Production Science 54, 504–509.
| A preliminary study into the use of ‘heat pipes’ to prevent high rigor temperature in beef carcasses by increasing cooling rate.Crossref | GoogleScholarGoogle Scholar |
Jacob RH, Surridge VSM, Beatty DT, Gardner GE, Warner RD (2014b) Grain feeding increases core body temperature of beef cattle. Animal Production Science 54, 444–449.
| Grain feeding increases core body temperature of beef cattle.Crossref | GoogleScholarGoogle Scholar |
Kim YHB, Stuart A, Nygaard G, Rosenvold K (2012) High pre rigor temperature limits the ageing potential of beef that is not completely overcome by electrical stimulation and muscle restraining. Meat Science 91, 62–68.
| High pre rigor temperature limits the ageing potential of beef that is not completely overcome by electrical stimulation and muscle restraining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVCmsLg%3D&md5=1f902cbe6afe74ff48f6d5b2ac116177CAS |
Kim YHB, Kerr M, Geesink G, Warner RD (2014a) Impacts of hanging method and high pre-rigor temperature and duration on quality attributes of ovine muscles. Animal Production Science 54, 414–421.
| Impacts of hanging method and high pre-rigor temperature and duration on quality attributes of ovine muscles.Crossref | GoogleScholarGoogle Scholar |
Kim YHB, Warner RD, Rosenvold K (2014b) Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. Animal Production Science 54, 375–395.
| Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review.Crossref | GoogleScholarGoogle Scholar |
Lomiwes D, Farouk MM, Wiklund E, Young OA (2014) Small heat shock proteins and their role in meat tenderness. Meat Science 96, 26–40.
| Small heat shock proteins and their role in meat tenderness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yhs77F&md5=78ede68be97558232a43d63eabcf2572CAS | 23896134PubMed |
Loxton I, Grant TP, Reid DJ, Lawrence RJ (2007) Effects of a supplement containing betaine on feedlot steers exposed to a heat load. In ‘Recent Advances in Animal Nutrition in Australia’, Armidale, NSW, Australia. (Eds P Cronje and N Richards) pp. 201–210. (University of New England: Armidale, NSW)
Marsh BB (1954) Rigor mortis in beef. Journal of the Science of Food and Agriculture 5, 70–75.
| Rigor mortis in beef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXjtlKqsQ%3D%3D&md5=20c13aeeb6fdd9ec8cb0cb2d4e1acd6dCAS |
MLA (2013) MLA Australian cattle industry projections 2013.Meat & Livestock Australia. Available at: http://www.mla.com.au/Prices-and-markets/Trends-and-analysis/Beef/Forecasts/MLA-cattle-industry-projections-2013. Accessed on 1 August 2013.
Moran DS, Eli-Berchoer L, Heled Y, Mendel L, Schocina M, Horowitz M (2006) Heat intolerance: Does gene transcription contribute? Journal of Applied Physiology 100, 1370–1376.
| Heat intolerance: Does gene transcription contribute?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFyhtro%3D&md5=a01df1cc5a123d1ba4ecc54b9a71e190CAS | 16357068PubMed |
Murray J (2001) Hot boning and warm boning procedures associated with program approval and criteria to be applied to hot and warm boned meat. Australian Quarantine Inspection Service No. 2001/20, Brisbane, Qld.
Offer G (1991) Modelling of the formation of Pale, Soft and Exudative meat effects of chilling regime and rate and extent of glycolysis. Meat Science 30, 157–184.
| Modelling of the formation of Pale, Soft and Exudative meat effects of chilling regime and rate and extent of glycolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslygu7Y%3D&md5=ab78c2132e3b69fa280d2bb8d1e81744CAS | 22061833PubMed |
Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL (2011) Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Science 89, 111–124.
| Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review.Crossref | GoogleScholarGoogle Scholar | 21592675PubMed |
Pighin DG, Brown W, Ferguson DM, Fisher AD, Warner RD (2014) Relationship between changes in core body temperature in lambs and post-slaughter muscle glycogen content and dark-cutting. Animal Production Science 54, 459–463.
| Relationship between changes in core body temperature in lambs and post-slaughter muscle glycogen content and dark-cutting.Crossref | GoogleScholarGoogle Scholar |
Reichel MP, Phillips DM, Jones R, Gill CO (1991) Assessment of the hygienic adequacy of a commercial hot boning process for beef by a temperature function integration technique. International Journal of Food Microbiology 14, 27–41.
| Assessment of the hygienic adequacy of a commercial hot boning process for beef by a temperature function integration technique.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnsFGjtQ%3D%3D&md5=3a627fd398bf3bff4b0742c4e5a7b68eCAS | 1742170PubMed |
Rhee MS, Wheeler TL, Shackelford SD, Koohmaraie M (2004) Variation in palatability and biochemical traits within and among eleven beef muscles. Journal of Animal Science 82, 534–550.
Rosenvold K, Wiklund E (2011) Retail colour display life of chilled lamb as affected by processing conditions and storage temperature. Meat Science 88, 354–360.
| Retail colour display life of chilled lamb as affected by processing conditions and storage temperature.Crossref | GoogleScholarGoogle Scholar | 21316158PubMed |
Rosenvold K, North M, Devine C, Micklander E, Hansen P, Dobbie P, Wells R (2008) The protective effect of electrical stimulation and wrapping on beef tenderness at high pre rigor temperatures. Meat Science 79, 299–306.
| The protective effect of electrical stimulation and wrapping on beef tenderness at high pre rigor temperatures.Crossref | GoogleScholarGoogle Scholar | 22062758PubMed |
Sammel LM, Hunt MC, Kropf DH, Hachmeister KA, Kastner CL, Johnson DE (2002) Influence of chemical characteristics of beef inside and outside semimembranosus on color traits. Journal of Food Science 67, 1323–1330.
| Influence of chemical characteristics of beef inside and outside semimembranosus on color traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVyqsb4%3D&md5=0704891bf821bf0a99289d18ec1a063fCAS |
Savage AW, Warriss PD, Jolley PD (1990) The amount and composition of the proteins in drip from stored pig meat. Meat Science 27, 289–303.
| The amount and composition of the proteins in drip from stored pig meat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbmvFSmtg%3D%3D&md5=a119b5bcd8566ca1322be299203a3645CAS | 22055365PubMed |
Savell JW, Mueller SL, Baird BE (2005) The chilling of carcasses. Meat Science 70, 449–459.
| The chilling of carcasses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbns1Sisg%3D%3D&md5=9ca9d80413e7acb630edeb637dd809bfCAS | 22063744PubMed |
Seyfert M, Hunt MC, Mancini RA, Hachmeister KA, Kropf DH, Unruh JA (2004) Accelerated chilling and modified atmosphere packaging affect colour and colour stability of injection-enhanced beef round muscles. Meat Science 68, 209–219.
| Accelerated chilling and modified atmosphere packaging affect colour and colour stability of injection-enhanced beef round muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVOhtLs%3D&md5=364cfc3faaa8eccb9f71935ab412d40fCAS | 22062230PubMed |
Simmons NJ, Daly CC, Mudford CR, Richards I, Jarvis G, Pleiter H (2006) Integrated technologies to enhance meat quality – An Australasian perspective. Meat Science 74, 172–179.
| Integrated technologies to enhance meat quality – An Australasian perspective.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsFWksA%3D%3D&md5=fd5596cab7a420ca11aef1f550046612CAS | 22062726PubMed |
Simmons NJ, Daly CC, Cummings TL, Morgan SK, Johnson NV, Lombard A (2008) Reassessing the principles of electrical stimulation. Meat Science 80, 110–122.
| Reassessing the principles of electrical stimulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsFGgtA%3D%3D&md5=ba691c3afef5f5123464e742f680a88fCAS | 22063176PubMed |
Smith KL, Stebulis SE, Waldron MR, Overton TR (2007) Prepartum 2,4-thiazolidinedione alters metabolic dynamics and dry matter intake of dairy cows. Journal of Dairy Science 90, 3660–3670.
| Prepartum 2,4-thiazolidinedione alters metabolic dynamics and dry matter intake of dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OltL4%3D&md5=f1ac8ef1e73b6f37806d1ba8ba5034b5CAS | 17638977PubMed |
Stolowski GD, Baird BE, Miller RK, Savell JW, Sams AR, Taylor JF, Sanders JO, Smith SB (2006) Factors influencing the variation in tenderness of seven major beef 768 muscles from three Angus and Brahman breed crosses. Meat Science 73, 475–483.
| Factors influencing the variation in tenderness of seven major beef 768 muscles from three Angus and Brahman breed crosses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsV2ktQ%3D%3D&md5=8b8bfa7de9af3200471e4b4fc9326dfaCAS | 22062486PubMed |
Talmant A, Monin G, Briand M, Dadet M, Briand Y (1986) Activities of metabolic and contractile enzymes in 18 bovine muscles. Meat Science 18, 23–40.
| Activities of metabolic and contractile enzymes in 18 bovine muscles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXjtFGisg%3D%3D&md5=7456e283964d2bd8b8f135e9b61f72edCAS | 22055463PubMed |
Tarrant PV (1977) The effect of hot-boning on glycolysis in beef muscle. Journal of the Science of Food and Agriculture 28, 927–930.
| The effect of hot-boning on glycolysis in beef muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkvV2l&md5=c80fb220bb571debdbe3e53747ee7ae4CAS |
Tarrant PV (1989) Animal behavior and environment in the dark-cutting condition in beef—a review. Irish Journal of Food Science & Technology 13, 1–21.
Tarrant PV, Mothersill C (1977) Glycolysis and associated changes in beef carcasses. Journal of the Science of Food and Agriculture 28, 739–749.
| Glycolysis and associated changes in beef carcasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXls1Kitbg%3D&md5=03dc1ca58578fb9c995d87844c8b3af0CAS |
Thompson JM (2002) Managing meat tenderness. Meat Science 62, 295–308.
| Managing meat tenderness.Crossref | GoogleScholarGoogle Scholar |
Thomson KL, Gardner GE, Simmons N, Thompson JM (2008) Length of exposure to high post-rigor temperatures affects the tenderisation of the beef M. longissmus dorsi. Australian Journal of Experimental Agriculture 48, 1442–1450.
| Length of exposure to high post-rigor temperatures affects the tenderisation of the beef M. longissmus dorsi.Crossref | GoogleScholarGoogle Scholar |
Wang C, Liu Q, Yang WZ, Wu J, Zhang WW, Zhang P, Dong KH, Huang YX (2010a) Effects of betaine supplementation on rumen fermentation, lactation performance, feed digestibilities and plasma characteristics in dairy cows. The Journal of Agricultural Science 148, 487–495.
| Effects of betaine supplementation on rumen fermentation, lactation performance, feed digestibilities and plasma characteristics in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFeisbw%3D&md5=729ca643d452fb5205416d523dab44b5CAS |
Wang Z, Yao T, Pini M, Zhou Z, Fantuzzi G, Song Z (2010b) Betaine improved adipose tissue function in mice fed a high fat diet: A mechanism for hepatoprotective effect of betaine in nonalcholic fatty liver disease. American Journal of Physiology. Gastrointestinal and Liver Physiology 298, G634–G642.
| Betaine improved adipose tissue function in mice fed a high fat diet: A mechanism for hepatoprotective effect of betaine in nonalcholic fatty liver disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlWjtLs%3D&md5=ce02c5bf39194cba6d7d85482085956fCAS | 20203061PubMed |
Warner RD, Dunshea FR, Gutzke D, Lau J, Kearney G (2014a) Factors influencing the incidence of high rigor temperature in beef carcasses in Australia. Animal Production Science 54, 363–374.
| Factors influencing the incidence of high rigor temperature in beef carcasses in Australia.Crossref | GoogleScholarGoogle Scholar |
Warner RD, Kerr M, Kim YHB, Geesink G (2014b) Pre-rigor carcass stretching counteracts the negative effects of high rigor temperature on tenderness and water-holding capacity – using lamb muscles as a model Animal Production Science 54, 494–503.
| Pre-rigor carcass stretching counteracts the negative effects of high rigor temperature on tenderness and water-holding capacity – using lamb muscles as a modelCrossref | GoogleScholarGoogle Scholar |
Warner RD, Thompson JM, Polkinghorne R, Gutzke D, Kearney GA (2014c) A consumer sensory study of the influence of rigor temperature on eating quality and ageing potential of beef striploin and rump. Animal Production Science 54, 396–406.
| A consumer sensory study of the influence of rigor temperature on eating quality and ageing potential of beef striploin and rump.Crossref | GoogleScholarGoogle Scholar |
Watson R, Polkinghorne R, Thompson JM (2008) Development of the Meat Standards Australia (MSA) prediction model for beef palatability. Australian Journal of Experimental Agriculture 48, 1368–1379.
| Development of the Meat Standards Australia (MSA) prediction model for beef palatability.Crossref | GoogleScholarGoogle Scholar |
Wright LI, Scanga JA, Belk KE, Engle TE, Tatum JD, Person RC, McKenna DR, Griffin DB, McKeith FK, Savell JW, Smith GC (2005) Benchmarking value in the pork supply chain: Characterization of US pork in the retail marketplace. Meat Science 71, 451–463.
| Benchmarking value in the pork supply chain: Characterization of US pork in the retail marketplace.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlKksA%3D%3D&md5=2dd2b00019a19c455b44a665cbc8ae73CAS | 22060920PubMed |
Young AJ (1990) Energy substrate utilization during exercise in extreme environments. Exercise and Sport Sciences Reviews 18, 65–118.
| Energy substrate utilization during exercise in extreme environments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3pt1Sqsw%3D%3D&md5=ba28a1a290de227e6e22e1f3146fe29dCAS | 2192901PubMed |