Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

The symbiotic rumen microbiome and cattle performance: a brief review

C. Bath A B E , M. Morrison D , E. M. Ross A B C , B. J. Hayes A B C and B. G. Cocks A B C
+ Author Affiliations
- Author Affiliations

A Department of Primary Industries, Bioscience Research Division, Bundoora, Vic. 3083, Australia.

B Dairy Futures Cooperative Research Centre, Bundoora, Vic. 3083, Australia.

C La Trobe University, Bundoora, Vic. 3086, Australia.

D CSIRO Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Qld 4068, Australia, and The Ohio State University, Columbus, OH, USA.

E Corresponding author. Email: carolyn.bath@dpi.vic.gov.au

Animal Production Science 53(9) 876-881 https://doi.org/10.1071/AN12369
Submitted: 25 October 2012  Accepted: 31 May 2013   Published: 16 July 2013

Abstract

The rumen of the dairy cow contains a rich and diverse collection of microbes that during feed digestion produce significant quantities of methane gas and ammonia, both of which contribute to greenhouse gas emissions. Strategies to redirect rumen carbon and nitrogen metabolism away from these products provide opportunities for significant productivity improvements in livestock systems not only by improving nutrient retention, but also by reducing greenhouse gas emissions. In order to develop these strategies, a greater knowledge of the diversity of the microbes within their rumen and their genomic capability is required. Many have used several techniques to study the rumen microbes, and the technology continues to improve. Among them include researchers at the Department of Primary Industries Victoria (DPI Vic) and the Dairy Futures Cooperative Research Centre (CRC) who are addressing the issue of regulation of methane emissions in dairy cattle, while scientists in Queensland and New South Wales, as part of the most recent Beef CRC program, focus on beef cattle. In this brief review, we examine how the techniques used in rumen microbial ecology have changed, and how technology improvements continue to allow us to examine the rumen microbiota of cattle and other ruminants, so as to better understand and possibly select animals with superior traits, leading to improvements in feed efficiency, methane emissions and nitrogen retention.


References

Attwood GT, Kelly WJ, Altermann EH, Moon CD, Leahy S, Cookson AL (2008) Application of rumen microbial genome information to livestock systems in the postgenomic era. Australian Journal of Experimental Agriculture 48, 695–700.
Application of rumen microbial genome information to livestock systems in the postgenomic era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVGht7Y%3D&md5=daebe346d1dda9ef90298ab88bd79a74CAS |

Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106, 1948–1953.
Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVKitro%3D&md5=26223af0cdf487db3d930e68269660e4CAS | 19181843PubMed |

Dairy Australia (2013) The Australian dairy industry. Available at http://www.dairyaustralia.com.au/Industry-overview/About-the-industry.aspx [Verified 28 March 2013]

Dehority B, Orpin C (1988) Development of, and natural fluctuations in, rumen microbial populations. In ‘The rumen microbial ecosystem’. (Eds P Hobson, C Stewart.) pp. 151–183. (Blackie Academic & Professional: London)

Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62, 313–322.
Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsValtr7E&md5=0d665915047c46a186fc29a2bb8d3d67CAS | 17949432PubMed |

Edwards JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek 86, 263–281.
16S rDNA library-based analysis of ruminal bacterial diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1aisLo%3D&md5=c00fc51181a798049a981bc24fe6f3d1CAS |

Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, DeSilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology 76, 7482–7490.
Rumen microbial population dynamics during adaptation to a high-grain diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1elsb3N&md5=c674514f38ae6186b54dd16feab6789aCAS | 20851965PubMed |

Firkins JL, Yu Z, Morrison M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. Journal of Dairy Science 90, E1–E16.
Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy.Crossref | GoogleScholarGoogle Scholar | 17517749PubMed |

Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America 104, 13 780–13 785.
Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVGjsbg%3D&md5=8eaab43f9d73a2664a621c8da73b1f22CAS |

Frey JC, Pell AN, Berthiaume R, Lapierre H, Lee S, Ha JK, Mendell JE, Angert ER (2009) Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. Journal of Applied Microbiology 108, 1982–1993.

Gerosa S, Skoet J (2012) Milk availability: Trends in production and demand and medium-term outlook. Food and Agriculture Organization of the United Nations. Available at http://www.fao.org/docrep/015/an450e/an450e00.pdf [Verified 20 June 2013]

Grainger C, Williams R, Eckard RJ, Hannah MC (2010) A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain. Journal of Dairy Science 93, 5300–5308.
A high dose of monensin does not reduce methane emissions of dairy cows offered pasture supplemented with grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsl2qsA%3D%3D&md5=44bdefbe00b8aa479714b014387b61d0CAS | 20965346PubMed |

Guan H, Wittenberg KM, Ominski KH, Krause DO (2006) Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science 84, 1896–1906.
Efficacy of ionophores in cattle diets for mitigation of enteric methane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aqtLw%3D&md5=0d980724283e9514073a7354626db953CAS | 16775074PubMed |

Guan LL, Nkrumah JD, Basarab JA, Moore SS (2008) Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency. FEMS Microbiology Letters 288, 85–91.
Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle’s feed efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlans7bN&md5=2725f651d10c663bfcb27aba37f1ecddCAS | 18785930PubMed |

Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467.
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2mtA%3D%3D&md5=f609f6836c4ec43d62d0fb5dc59a0fe5CAS | 21273488PubMed |

Hobson PN, Stewart CS (1997) The rumen bacteria. In ‘The Rumen Microbial Ecosystem’. pp. 10–72. (Blackie Academic & Professional: London)

Hulshof RBA, Berndt A, Gerrits WJJ, Dijkstra J, van Zijderveld SM, Newbold JR, Perdok HB (2012) Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of Animal Science 90, 2317–2323.
Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFehsbjN&md5=f9f67849da633dedf985d7fd3533c993CAS |

Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In ‘Methods in microbiology. Vol. 3B’. (Eds JR Norris, DW Ribbons) pp. 117–132. (Academic Press: London)

Huws SA, Lee MRF, Muetzel SM, Scott MB, Wallace RJ, Scollan ND (2010) Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiology Ecology 73, 396–407.

Johnson KA, Johnson DE (1995) Methane emissions from cattle. Journal of Animal Science 73, 2483–2492.

Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336.
Human nutrition, the gut microbiome and the immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOqsb4%3D&md5=83e3fc061e21716639ef9c050925c5ceCAS | 21677749PubMed |

Khafipour E, Li S, Plaizier JC, Krause DO (2009) Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 75, 7115–7124.
Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSit7vN&md5=f3dbfcdf6c046e9e858cc0a39014721aCAS | 19783747PubMed |

Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8, e47879
Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVKgsL8%3D&md5=94c440c9e25bd8f83689b3fc29476f87CAS | 23408926PubMed |

Klieve AV, Hennessy D, Ouwerkerk D, Forster RJ, Mackie RI, Attwood GT (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology 95, 621–630.
Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svks1egsQ%3D%3D&md5=9b5727e7589173163d4f36c3589c9fa4CAS | 12911711PubMed |

Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 30, 513–520.
Unlocking the potential of metagenomics through replicated experimental design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Cgs74%3D&md5=03ca72aa9a68bf86e8a3705673a02774CAS | 22678395PubMed |

Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters 204, 361–366.
Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kiur8%3D&md5=a8eec38d672f4eb8d59450d9432e36ebCAS | 11731149PubMed |

Krause DO, Smith WJM, McSweeney CS (2004) Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology. Microbiology 150, 2899–2909.
Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2jsL8%3D&md5=ade08b0416ba70b44cfb22f67c914183CAS | 15347749PubMed |

Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.
Microbial ecology: human gut microbes associated with obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlemtLvM&md5=d4ad26fa5733ee54ec5c33c3b21b047fCAS | 17183309PubMed |

Louis P (2012) Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Digestive Diseases and Sciences 57, 1987–1989.
Does the human gut microbiota contribute to the etiology of autism spectrum disorders?Crossref | GoogleScholarGoogle Scholar | 22736019PubMed |

Lupton JR (2004) Microbial degradation products influence colon cancer risk: the butyrate controversy. The Journal of Nutrition 134, 479–482.

Mackie RI, McSweeney CS, Aminov RI (2001) Rumen. Encyclopedia of Life Sciences 10.1038/npg.els.0000404

Madeira H, Peng L, Morrison M (1997) Biochemical and mutational analysis of a gingipain-like peptidase activity from Prevotella ruminicola B14, and its role in ammonia production by ruminal bacteria. Applied and Environmental Microbiology 63, 670–675.

Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241.
Reciprocal interactions of the intestinal microbiota and immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtleru7%2FM&md5=40302802ebf1acff9dcb57a5d7131670CAS | 22972296PubMed |

McSweeney CS, Denman SE, Wright A-DG, Yu Z (2007) Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Australasian Journal of Animal Sciences 20, 283–294.

Moate PJ, Williams SRO, Grainger C, Hannah MC, Ponnampalam EN, Eckard RJ (2011) Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Animal Feed Science and Technology 166–167, 254–264.
Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows.Crossref | GoogleScholarGoogle Scholar |

Morgavi DP, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4, 1024–1036.
Microbial ecosystem and methanogenesis in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVajtr0%3D&md5=08f6689fa21507f72ed6bcf5a6cda2baCAS | 22444607PubMed |

Morgavi DP, Kelly WJ, Janssen PH, Attwood GT (2013) Rumen microbial (meta)genomics and its application to ruminant production. Animal 7, 184–201.
Rumen microbial (meta)genomics and its application to ruminant production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFeitr4%3D&md5=4c8023b9a90d7d87939e0aff902f175cCAS | 23031271PubMed |

Morrison M (2000) The microbial ecology and physiology of ruminal nitrogen metabolism. In ‘Ruminant physiology: digestion, metabolism, growth and reproduction’. (Ed. PB Cronje) pp. 99–114. (CABI Publishing: New York)

Morrison M, Nelson K (2005) Rumen microbial genomics. In ‘Applications of gene-based technologies for improving animal production and health in developing countries’. (Eds HS Makkar, G Viljoen) pp. 349–355. (Springer: Dordrecht, The Netherlands)

Morrison M, Adams S, Nelson K, Attwood G (2005) Metagenomic analysis of the microbiomes in ruminants and other herbivores. In ‘Methods in gut microbial ecology for ruminants’. (Eds HS Makkar, C McSweeney) pp. 209–220. (Springer: Dordrecht, The Netherlands)

Nagaraja TG, Newbold CJ, Nevel CJ, Demeyer DI (1997) Manipulation of ruminal fermentation. In ‘The rumen microbial ecosystem’. (Eds PN Hobson, CS Stewart) pp. 523–632. (Blackie Academic & Professional: London)

Network RMG (2012) Rumen Microbial Genomics Network. Available at http://www.rmgnetwork.org.nz/ [Verified 28 March 2013]

Nolan JV (1975) Quantitative models of nitrogen metabolism in sheep. In ‘Digestion and metabolism in the ruminant’. (Eds IW MacDonald, ACI Warner) pp. 416–431. (University of New England Publishing Unit: Armidale, NSW)

Ouwerkerk D, Klieve AV, Forster RJ (2002) Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. Journal of Applied Microbiology 92, 753–758.
Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVKhs70%3D&md5=e60e1c28a69bbd5467ea7b50dd44a209CAS | 11966917PubMed |

Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, Morrison M (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proceedings of the National Academy of Sciences of the United States of America 107, 14 793–14 798.
Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKqt7%2FF&md5=4daaa149517765faa6eab6142166fb40CAS |

Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy AC, Morrison M (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333, 646–648.
Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yisb0%3D&md5=29bc664ae576254c187a392533264ba6CAS | 21719642PubMed |

Purushe J, Fouts D, Morrison M, White B, Mackie R, Coutinho P, Henrissat B, Nelson K (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microbial Ecology 60, 721–729.
Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche.Crossref | GoogleScholarGoogle Scholar | 20585943PubMed |

Reilly K, Carruthers VR, Attwood GT (2002) Design and use of 16S ribosomal DNA-directed primers in competitive PCRs to enumerate proteolytic bacteria in the rumen. Microbial Ecology 43, 259–270.
Design and use of 16S ribosomal DNA-directed primers in competitive PCRs to enumerate proteolytic bacteria in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1ajsr0%3D&md5=696f2f6f0a535c8d41b4418eea107540CAS | 12023733PubMed |

Ross E, Moate P, Bath C, Davidson S, Sawbridge T, Guthridge K, Cocks B, Hayes B (2012) High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genetics 13, 53
High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslWjt77E&md5=a28afdcda87aed9dbbdbfe3dc94d22abCAS | 22747657PubMed |

Ruminomics (2012) Available at http://www.ruminomics.eu [Verified 28 March 2013]

Russell J (1993) Rumen bacteria rob cattle of nutrients. Agricultural Research 40, 17–19.

Sawanon S, Kobayashi Y (2006) Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: evidence in defined cultures. Animal Science Journal 77, 208–214.
Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and non-cellulolytic Selenomonas ruminantium: evidence in defined cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltlalsr4%3D&md5=dba844f271c90d1df6c5e71d6d715332CAS |

Shinkai T, Kobayashi Y (2007) Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Applied and Environmental Microbiology 73, 1646–1652.
Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSktLw%3D&md5=26070aa5807ab25d53bae10e5ea06d79CAS | 17209077PubMed |

Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology 67, 2766–2774.
Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1CitLs%3D&md5=abbc83b2178ed1eb714c5b8665d39779CAS | 11375193PubMed |

The Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486, 215–221.
A framework for human microbiome research.Crossref | GoogleScholarGoogle Scholar | 22699610PubMed |

Thornton JH, Owens FN (1981) Monensin supplementation and in vivo methane production by steers. Journal of Animal Science 52, 628–634.

Van Nevel CJ, Demeyer DI (1977) Effect of monensin on rumen metabolism in vitro. Applied and Environmental Microbiology 34, 251–257.

Wallace RJ, Onodera R, Cotta MA (1997) Metabolism of nitrogen-containing compounds. In ‘The rumen microbial ecosystem’. (Eds PN Hobson, CS Stewart) pp. 283–328. (Blackie Academic & Professional: London)

Weimer P, Stevenson D, Mertens D, Thomas E (2008) Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Applied Microbiology and Biotechnology 80, 135–145.
Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVCju7g%3D&md5=4cfc89c5587a3491f80fca287ffc101dCAS | 18535825PubMed |

Wellcome Trust Sanger Institute (2012) MetaHITConsortium. Available at http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/ [Verified 28 March 2013]

Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4, 153–163.
Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFeisbw%3D&md5=9c1f66fb07ee7e102521cff4ec368a3fCAS | 16887636PubMed |

Williams YJ, Popovski S, Rea SM, Skillman LC, Toovey AF, Northwood KS, Wright A-DG (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Applied and Environmental Microbiology 75, 1860–1866.
A vaccine against rumen methanogens can alter the composition of archaeal populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFWlsb0%3D&md5=2d15a2169e741ec94cf66d533eda5be1CAS | 19201957PubMed |

Witzig M, Boguhn J, Kleinsteuber S, Fetzer I, Rodehutscord M (2010) Effect of the corn silage to grass silage ratio and feed particle size of diets for ruminants on the ruminal Bacteroides-Prevotella community in vitro. Anaerobe 16, 412–419.
Effect of the corn silage to grass silage ratio and feed particle size of diets for ruminants on the ruminal Bacteroides-Prevotella community in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjoslSksA%3D%3D&md5=360daabfea59a865c38accc0f58ff3c8CAS | 20493960PubMed |

Yang CM, Russell JB (1993) The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. Journal of Animal Science 71, 3470–3476.

Yu Z, Morrison M (2009) The gut microbiome: current understanding and future perspectives. In ‘Food-borne microbes: shaping the host ecosystem’. (Eds L Jaykus, H Wang, L Schlesinger) pp. 19–40. (ASM Press: Washington DC)

Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Applied and Environmental Microbiology 75, 6524–6533.
Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2itL%2FK&md5=e8eeb4babd5df8623ea436d00a9f1e76CAS | 19717632PubMed |