Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Hyaluronan: is it a biomarker for adipose development within bovine muscle?

P. G. Allingham A B E , P. L. Greenwood C , T. J. Brown D and G. S. Harper B
+ Author Affiliations
- Author Affiliations

A Cooperative Research Centre for Cattle and Beef Quality, CJ Hawkins Homestead, University of New England, Armidale, NSW 2351, Australia.

B CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Qld 4067, Australia.

C Beef Industry Centre of Excellence, NSW Department of Primary Industries, Trevenna Road, Armidale, NSW 2351, Australia.

D Hyaluronan Research Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.

E Corresponding author. Email: peter.allingham@csiro.au

Animal Production Science 50(2) 88-97 https://doi.org/10.1071/AN09002
Submitted: 12 January 2009  Accepted: 29 November 2009   Published: 11 February 2010

Abstract

Based on an association with extracellular matrix remodelling, mitosis, proliferation and adipogenic differentiation, the glycosaminoglycan hyaluronan (HA) was assessed as a marker for intramuscular fat (IMF) development (marbling) in bovine loin muscle (longissimus dorsi, LD). Loin samples collected from the quartering site of feedlot-finished Wagyu–Angus and Jersey–Limousin steers were assayed for percentage IMF (IMF%) and HA after assignment of AUS-MEAT marbling scores. There was a moderate phenotypic correlation (r2 = 0.69) between IMF% and marbling score but little variance was explained by HA concentration. Breed was not a significant factor in marbling score or IMF% but did influence the HA concentration of the LD, with Wagyu–Angus steers having 2-fold more HA than Jersey–Limousin steers at the same marbling score. The non-linear decline in fat-adjusted HA levels as marbling score increased suggests that HA concentration was associated with lean growth potential of the muscle rather than adipogenesis. Using a different experimental approach, differences in distribution and amount of HA could not be discerned in histological sections of LD from age-matched Wagyu–Hereford heifers allocated to a low (score 1) or medium (score 3) marbling score group. These findings were consistent with the absence of differences between the two groups for other indicators of fatness (IMF% and P8 fat depth), maturity and myofibre characteristics despite an increase in oxidative capacity of the muscle with age. The data support the conclusion that the concentration of HA in the LD alone was not predictive of development of intramuscular fat.


Acknowledgements

The authors are also grateful to Beef CRC colleagues, Drs Cindy Bottema and Zibby Kruk, University of Adelaide, Roseworthy campus, Adelaide, and Mr Gary Pavey, Rangers Valley Cattle Station, Glenn Innes, NSW, for their collaboration and assistance in the collection of loin muscle samples with known marbling score grading. The authors acknowledge the assistance given by staff of the NSW Department of Primary Industry Beef Industry Centre of Excellence, University of New England, Armidale, NSW, in the acquisition of data from muscle histological samples. Antibody S5–8H2 was kindly provided by Dr Brigitte Picard, INRA.


References


Allingham PG, Harper GS, Hennessy DW, Oddy VH (2001) The influence of pre weaning nutrition on biochemical and myofibre characteristics of bovine semitendinosus muscle. Australian Journal of Agricultural Research 52, 891–902.
Crossref | GoogleScholarGoogle Scholar | open url image1

Allingham PG, Brownlee GR, Nilsson SK, Harper GS, Brown TJ (2006) Hyaluronan synthase gene expression and synthesis of hyaluronan during proliferation and differentiation of 3T3–L1 adipocytes. Archives of Biochemistry and Biophysics 452, 83–91.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Aratani Y, Kitagawa Y (1988) Enhanced synthesis and secretion of Type IV collagen and entactin during adipose conversion of 3T3–L1 cells and production of unorthodox laminin complex. Journal of Biological Chemistry 263, 16 163–16 169.
CAS | PubMed |
open url image1

Armstrong SE, Bell DR (2002) Relationship between lymph and tissue hyaluronan in skin and skeletal muscle. American Journal of Physiology. Heart and Circulatory Physiology 283, H2485–H2494.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Asakura A (2003) Stem cells in adult skeletal muscle. Trends in Cardiovascular Medicine 13, 123–128.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

AUS-MEAT (1998) ‘Handbook of Australian meat.’ (AUS-MEAT: Brisbane)

Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N (2004) The TG5 thyroglobulin test for a marbling quantitative trait loci evaluated in feedlot cattle. Australian Journal of Experimental Agriculture 44, 669–674.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Barendse W, Bunch RJ, Harrison BE, Thomas M (2006) The leptin C73T missense mutation is not associated with marbling and fatness traits in a large gene mapping experiment in Australian cattle. Animal Genetics 37, 211–214.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baud S , Goddard M , Hygate L (1994) Targeting the Japanese beef market. Final Report. Meat Research Corporation Project M. 112, 26.

Bindon BM (2004) A review of genetic and non-genetic opportunities for manipulation of marbling. Australian Journal of Experimental Agriculture 44, 687–696.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bonnet M, Faulconnier Y, Leroux C, Jurie C, Cassar-Malek I, Bauchart D, Boulesteix P, Pethick D, Hocquette JF, Chilliard Y (2007) Glucose-6-phosphate dehydrogenase and leptin are related to differences among Limousin and Angus or Japanese Black × Angus steers. Journal of Animal Science 85, 2882–2894.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Brandstetter AM, Picard B, Geay Y (1998) Muscle fibre characteristics in four muscles of growing bulls. I. Postnatal differentiation. Livestock Production Science 53, 15–23.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brecht M, Mayer U, Schlosser E, Prehm P (1986) Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. The Biochemical Journal 239, 445–450.
CAS | PubMed |
open url image1

Brown TJ, Alcorn D, Fraser JRE (1999) Adsorption of hyaluronan applied to surface of intact skin. Journal of Investigative Dermatology 113, 740–746.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bullard KM, Longaker MT, Lorenz HP (2003) Foetal wound healing: current biology. World Journal of Surgery 27, 54–61.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cafe LM, Hearnshaw H, Hennessy DW, Greenwood PL (2006) Growth and carcass characteristics of Wagyu-sired steers at heavy market weights following slow or rapid growth to weaning. Australian Journal of Experimental Agriculture 46, 951–955.
Crossref | GoogleScholarGoogle Scholar | open url image1

Christie WW (1989) ‘Gas chromatography and lipids: a practical guide.’ (Oily Press: Glasgow)

Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic and angiogenic perspectives. Microcirculation 4, 211–232.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 19, 1004–1013.
CAS | PubMed |
open url image1

Ferguson D (2004) Objective on-line assessment of marbling: a brief review. Australian Journal of Experimental Agriculture 44, 681–685.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fraser JRE , Laurent TC (1996) Hyaluronan. In ‘Extracellular matrix. Vol. 2. Molecular components and interactions’. (Ed. WD Comper) pp. 141–199. (Harwood Academic Publishers: Amsterdam)

Greenwood PL, Cafe L, Hearnshaw H, Hennessy DW, Thompson JM, Morris SG (2006a) Long term consequences of birth weight and growth to weaning for carcass, yield and beef quality characteristics of Piedmontese- and Wagyu-sired cattle. Australian Journal of Experimental Agriculture 46, 257–269.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenwood PL, Gardner GE, Hegarty RS (2006b) Lamb myofibre characteristics are influenced by sire estimated breeding values and pastoral nutritional system. Australian Journal of Agricultural Research 57, 627–639.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greenwood PL, Davis J, Gaunt GM, Ferrier GR (2006c) Influences on the loin and cellular characteristics of the M. longissimus lumborum of Australian Poll Dorset-sired lambs. Australian Journal of Agricultural Research 57, 1–12.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiological Reviews 78, 783–809.
CAS | PubMed |
open url image1

Harper GS (1999) Trends in skeletal biology and the understanding of toughness in beef. Australian Journal of Agricultural Research 50, 1105–1129.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Harper GS, Pethick DW (2004) How might marbling begin? Australian Journal of Experimental Agriculture 44, 653–662.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hocquette JF , Jurie C , Ueda Y , Boulesteix P , Bauchart D , Pethick DW (2003) The relationship between muscle metabolic pathways and marbling of beef. In ‘Progress in research on energy and protein metabolism. EAAP Publication No. 109’. (Eds WB Souffrant, CC Metges) pp. 513–516. (Wageningen Academic Publishers: Wageningen, The Netherlands)

Hood RL, Allen CE (1973) Cellularity of bovine tissues. Journal of Lipid Research 14, 605–610.
CAS | PubMed |
open url image1

Jiang H, Peterson RS, Wang W, Bartnik E, Knudson CB, Knudson W (2002) A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly and receptor mediated endocytosis in COS-7 cells. The Journal of Biological Chemistry 277, 10 531–10 538.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jurie C, Cassar-Malek I, Bonnet M, Leroux C, Bauchart D, Boulesteix P, Pethick DW, Hocquette JF (2007) Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. Journal of Animal Science 85, 2660–2669.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kawaguchi N, Xu X, Tajima R, Kronqvist P, Sundberg C, Loechel F, Albrechtsen R, Wewer UM (2002) ADAM 12 protease induces adipogenesis in transgenic mice. American Journal of Pathology 160, 1895–1903.
CAS | PubMed |
open url image1

Knudson CB, Knudson W (1993) Hyaluronan-binding proteins in development, tissue homeostasis and disease. The FASEB Journal 7, 1233–1241.
CAS | PubMed |
open url image1

Kubo Y, Kaidzu S, Nakajima I, Takenouchi K, Nakamura F (2000) Organization of extracellular matrix components during differentiation of adipocytes in long-term culture. In Vitro Cellular & Developmental Biology. Animal 36, 38–44.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kurisaki T, Masuda A, Sudo K, Sakagami J, Higasiyama S , et al . (2003) Phenotypic analysis of meltrin α (ADAM12)-deficient mice: involvement of meltrin α in adipogenesis and myogenesis. Molecular and Cellular Biology 23, 55–61.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Laurent TC, Fraser JR (1992) Hyaluronan. FASEB Journal 6, 2397–2404.
CAS | PubMed |
open url image1

Laurent TC, Johnson-Wells G, Hellstrom S, Engstrom-Laurent A, Wells AF (1991) Localisation of hyaluronan in various muscular tissues. A morphological study in the rat. Cell and Tissue Research 263, 201–205.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lee TH, Wisniewski HG, Vilcek J (1992) A novel secretory tumour necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins closely related to the adhesion receptor CD44. Journal of Cell Biology 116, 545–557.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lehnert SA, Byrne KA, Reverter A, Nattrass GS, Greenwood PL, Wang YH, Hudson NJ, Harper GS (2006) Gene expression profiling of bovine skeletal muscle in response to and recovery from chronic and severe undernutrition. Journal of Animal Science 84, 3239–3250.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lepperdinger G, Strobl B, Kreil G (1998) HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. The Journal of Biological Chemistry 273, 22 466–22 470.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lesley J, Hyman R (1998) CD44 structure and function. Frontiers in Bioscience 3, 616–630. open url image1

Maccatrozzo L, Patruno M, Toniolo L, Reggiani C, Mascarello F (2004) Myosin heavy chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle. European Journal of Histochemistry 48, 357–366.
CAS | PubMed |
open url image1

Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. The Journal of Clinical Investigation 111, 71–79.
CAS | PubMed |
open url image1

McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension and RhoA regulate stem cell lineage commitment. Developmental Cell 6, 483–495.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

MSA (1999) ‘Grading for eating quality – development of the meat standards Australia grading system. Vol 1.’ (Meat Standards Australia: Newstead, Qld)

Musil KJ, Malmstrom A, Donner J (1991) Alteration of proteoglycan metabolism during the differentiation of 3T3–L1 fibroblasts into adipocytes. The Journal of Cell Biology 114, 821–826.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nakajima I, Yamaguchi T, Ozutsumi K, Aso H (1998) Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 63, 193–200.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nishimura T, Hattori A, Takahashi K (1999) Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. Journal of Animal Science 77, 93–104.
CAS | PubMed |
open url image1

Parsons BJ , Al-Assaf S , Navaratnam S , Phillips GO (2002) Comparisons of the reactivity of different oxidative species (ROS) towards hyaluronan. In ‘Hyaluronan: chemical, biochemical and biological aspects. Vol. 1’. (Eds JF Kennedy, GO Phillips, PA Williams, VC Hascall) pp. 141–150. (Woodhead Publishing: Cambridge)

Pethick DW, Harper GS, Oddy VH (2004) Growth, development and nutritional manipulation of marbling: a review. Australian Journal of Experimental Agriculture 44, 705–715.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pethick DW , Barendse W , Hocquette JF , Thompson JM , Wang YH (2007) Regulation of marbling and body composition – growth and development, gene markers and nutritional biochemistry. In ‘Energy and protein metabolism. EAAP Publication No. 124’. (Ed. I Ortiques-Marty) pp. 75–88. (Academic Publishers: Wageningen, The Netherlands)

Picard B, Duris MP, Jurie C (1998) Classification of bovine muscle fibres by different histochemical techniques. The Histochemical Journal 30, 473–477.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Picard B, Lefaucheur L, Berri C, Duclos MJ (2002) Muscle fibre ontogenesis in farm animal species. Reproduction, Nutrition, Development 42, 415–431.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Piehl-Aulin K, Laurent C, Engstrom-Laurent A, Hellstrom S, Henriksson J (1991) Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. Journal of Applied Physiology 71, 2493–2498.
CAS | PubMed |
open url image1

Reed RK, Lilja K, Laurent TC (1988) Hyaluronan in the rat with special reference to the skin. Acta Physiologica Scandinavica 134, 405–411.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Reggiani C , Mascarello F (2004) Fibre type identification and functional characterization in adult livestock animals. In ‘Muscle development of livestock animals. Physiology, genetics and meat quality’. (Eds MFW te Pas, ME Everts, HP Haagsman) pp. 39–68. (CABI Publishing: Wallingford, UK)

Reverter A, Johnston DJ, Perry D, Goddard ME, Burrow HM (2003) Genetic and phenotypic characterisation of animal, carcass and meat quality traits from temperate and tropically adapted beef breeds. 2. Abattoir carcass traits. Australian Journal of Agricultural Research 54, 119–134.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sazili AQ, Parr T, Sensky PL, Jones SW, Bardsley RG, Buttery P (2005) The relationship between slow and fast myosin heavy chain content, calpastatin and meat tenderness in different ovine muscles. Meat Science 69, 17–25.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Slevin M, Krupinski J, Kumar S, Gaffney J (1998) Angiogenic oligosaccharides of hyaluronan induce protein kinase activity in endothelial cells and activate cytoplasmic signal transduction pathway resulting in proliferation. Laboratory Investigation 78, 987–1003.
CAS | PubMed |
open url image1

Smith SB, Kawachi H, Choi CB, Choi CW, Wu G, Sawyer JE (2009) Cellular regulation of bovine intramuscular adipose tissue development and composition. Journal of Animal Science 87, E72–E82.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. Journal of Biological Chemistry 276, 34 167–34 174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stern R, Korgan G, Jedrzejas MJ, Soltes L (2007) The many ways to cleave hyaluronan. Biotechnology Advances 25, 537–557.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tanabe R, Muroya S, Chikuni K (1998) Sequencing of the 2a, 2x and slow isoforms of the bovine myosin heavy chain and the different expression among muscles. Mammalian Genome 9, 1056–1058.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Toole BP (1981) Glycosaminoglycans in morphogenesis. In ‘Cell biology of the extracellular matrix’. (Ed. ED Hay) pp. 259–294. (Plenum Press: New York)

Toole BP (2001) Hyaluronan in morphogenesis. Seminars in Cell & Developmental Biology 12, 79–87.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Underwood KR, Tong J, Zhu MJ, Qingwu WS, Means WJ, Ford SP, Paisley SI, Hess BW, Du M (2007) Relationship between kinase phosphorylation, muscle fibre typing and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. Journal of Agricultural and Food Chemistry 55, 9698–9703.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N (2002) Generation of different fates from multipotent muscle stem cells. Development 129, 2987–2995.
CAS | PubMed |
open url image1

Wang Y-H, Reverter A, Mannen H, Taniguchi M, Harper GS, Oyama K, Byrne KA, Oka A, Tsuji S, Lehnert SA (2005a) Transcriptional profiling of muscle tissue in growing Japanese Black cattle to identify genes involved with development of intramuscular fat. Australian Journal of Experimental Agriculture 45, 809–820.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wang Y-H, Byrne KA, Reverter A, Harper GS, Taniguchi M, McWilliam SM, Mannen H, Oyama K, Lehnert SA (2005b) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mammalian Genome 16, 201–210.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wang YH, Bower NI, Reverter A, Tan SH, De Jager N, Wang R, McWilliam SM, Café LM, Greenwood PL, Lehnert SA (2009) Gene expression patterns during intramuscular fat development in cattle. Journal of Animal Science 87, 119–130.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

West DC, Kumar S (1989) Hyaluronan and angiogenesis. Ciba Foundation Symposium 143, 187–201.
CAS | PubMed |
open url image1

White UA, Stephens JM (in press) Transcriptional factors that promote formation of white adipose tissue. Molecular and Cellular Endocrinolgy ,
Crossref | GoogleScholarGoogle Scholar | open url image1

Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Current Opinion in Cell Biology 14, 617–623.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yang A, Larsen TW, Smith SB, Tume RK (1999) Delta9 desaturase activity in bovine subcutaneous adipose tissue of different fatty acid composition. Lipids 34, 971–978.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Young HE, Ceballos EM, Smith JC, Mancini ML, Wright RP, Ragan BL, Bushell I, Lucas PA (1993) Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. In Vitro Cellular & Developmental Biology. Animal 29, 723–736.
Crossref | GoogleScholarGoogle Scholar | open url image1

Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Reagan CR, Lucas PA (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Developmental Dynamics 202, 137–144.
CAS | PubMed |
open url image1

Zembayashi M, Nishimura K, Lunt DK, Smith SB (1995) Effect of breed type and sex on the fatty acid composition of subcutaneous and intramuscular lipids of finishing steers and heifers. Journal of Animal Science 73, 3325–3332.
CAS | PubMed |
open url image1

Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demitriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24, 928–935.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1