Humerus midshaft histology in a modern and fossil wombat
Meg M. Walker A F , Julien Louys B , Andy I. R. Herries C D , Gilbert J. Price E and Justyna J. Miszkiewicz AA School of Archaeology and Anthropology, Australian National University, 44 Linnaeus Way, Canberra, ACT 2601, Australia.
B Australian Research Centre for Human Evolution, Griffith University, Brisbane, Qld 4111, Australia.
C Palaeoscience, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, Vic. 3086, Australia.
D Centre for Anthropological Palaeo-Research Institute, University of Johannesburg, Bunting Road Campus, Auckland Park, Gauteng, South Africa.
E School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
F Corresponding author. Email: walker.meg1@gmail.com
Australian Mammalogy 43(1) 30-39 https://doi.org/10.1071/AM20005
Submitted: 31 January 2020 Accepted: 26 May 2020 Published: 17 June 2020
Abstract
The common wombat (Vombatus ursinus) is equipped with a set of physiological and morphological adaptations suited to a fossorial lifestyle. These allow wombats to engage in efficient scratch-digging and maintaining a low basal metabolic rate while living underground. While bone microstructure has been described for several subterranean animals, wombat bone histology has received very little attention to date. Here, we present preliminary insights into bone histology in modern adult V. ursinus (Mt Fairy, New South Wales) and Pleistocene fossil Vombatus sp. (Bakers Swamp, New South Wales) midshaft humeri. The modern sample was well preserved, allowing us to identify varying bone tissue types (woven, parallel-fibred, lamellar). The sample showed vascularity composed of primary and secondary osteons, and simple longitudinal and radial vessels. We also observed evidence for Haversian remodelling (i.e. localised replacement of pre-existing bone) and coarse compact cancellous bone within the inner cortex of the diaphysis. The fossil histology was poorly preserved, but likely showed bone matrix organisation similar to the modern specimen. We use these preliminary data to discuss hypotheses for wombat forelimb biomechanical and physiological microscopic adaptation to a burrow environment. We encourage future intraskeletal examination of microstructure in wombat populations to better inform their ecological adaptations and behaviour in palaeontological contexts.
Additional keywords: biomechanics, forelimb, marsupials, microstructure, Pleistocene.
References
Amprino, R. (1947). La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Archives de Biologie 58, 315–330.Archer, M. (1984). The Australian marsupial radiation. In ‘Vertebrate Zoogeography and Evolution in Australasia’. (Eds M. Archer, and G. Clayton.) pp. 661–886. (Hesperian Press: Carlisle).
Barboza, P. S. (1993). Digestive strategies of the wombats: feed intake, fiber digestion, and digesta passage in two grazing marsupials with hindgut fermentation. Physiological Zoology 66, 983–999.
| Digestive strategies of the wombats: feed intake, fiber digestion, and digesta passage in two grazing marsupials with hindgut fermentation.Crossref | GoogleScholarGoogle Scholar |
Barboza, P. S., and Hume, I. D. (1992a). Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 162, 552–560.
| Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae).Crossref | GoogleScholarGoogle Scholar | 1430423PubMed |
Barboza, P. S., and Hume, I. D. (1992b). Hindgut fermentation in the wombats: two marsupial grazers. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 162, 561–566.
| Hindgut fermentation in the wombats: two marsupial grazers.Crossref | GoogleScholarGoogle Scholar | 1430424PubMed |
Barboza, P. S., Hume, I. D., and Nolan, J. V. (1993). Nitrogen metabolism and requirements of nitrogen and energy in the wombats (Marsupialia: Vombatidae). Physiological Zoology 66, 807–828.
| Nitrogen metabolism and requirements of nitrogen and energy in the wombats (Marsupialia: Vombatidae).Crossref | GoogleScholarGoogle Scholar |
Boggs, D. F., Kilgore, D. L., and Birchard, G. F. (1984). Respiratory physiology of burrowing mammals and birds. Comparative Biochemistry and Physiology. Part A, Physiology 77, 1–7.
| Respiratory physiology of burrowing mammals and birds.Crossref | GoogleScholarGoogle Scholar |
Botha, J., and Chinsamy, A. (2001). Growth patterns deduced from the bone histology of cynodonts Diademodon and Cynognathus. Journal of Vertebrate Paleontology 20, 705–711.
| Growth patterns deduced from the bone histology of cynodonts Diademodon and Cynognathus.Crossref | GoogleScholarGoogle Scholar |
Brewer, P., Archer, M., Hand, S., and Price, G. J. (2018). A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae. Palaeontologia Electronica 21.2.27A, 1–48.
| A new species of Miocene wombat (Marsupialia, Vombatiformes) from Riversleigh, Queensland, Australia, and implications for the evolutionary history of the Vombatidae.Crossref | GoogleScholarGoogle Scholar |
Bromage, T. G., Goldman, H. M., McFarlin, S. C., Warshaw, J., Boyde, A., and Riggs, C. M. (2003). Circularly polarized light standards for investigations of collagen fiber orientation in bone. The Anatomical Record 274B, 157–168.
| Circularly polarized light standards for investigations of collagen fiber orientation in bone.Crossref | GoogleScholarGoogle Scholar |
Bromage, T. G., Lacruz, R. S., Hogg, R., Goldman, H. M., McFarlin, S. C., Warshaw, J., Dirks, W., Perez-Ochoa, A., Smolyar, I., Enlow, D. H., and Boyde, A. (2009). Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcified Tissue International 84, 388–404.
| Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history.Crossref | GoogleScholarGoogle Scholar | 19234658PubMed |
Castanet, J., Francillon-Vieillot, H., Meunier, F. J., and de Ricqlès, A. (1993). Bone and individual aging. In ‘Bone. Vol 7: Bone Growth – B’. (Ed. B. K. Hall.) pp. 245–283. (CRC Press: Boca Raton, FL).
Chinsamy-Turan, A. (2012). ‘Forerunners of Mammals: Radiation, Histology, Biology.’ (Indiana University Press: Bloomington, IN.)
Contreras, L. C., and McNab, B. K. (1990). Thermoregulation and energetics in subterranean mammals. In ‘Evolution of Subterranean Mammals at the Organismal and Molecular Levels’. (Eds E. Nevo, and O. A. Reig.) pp. 231–250. (Alan R. Liss: New York.)
Cubo, J., Legendre, P., De Ricqlès, A., Montes, L., De Margerie, E., Castanet, J., and Desdevises, Y. (2008). Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evolution & Development 10, 217–227.
| Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.Crossref | GoogleScholarGoogle Scholar |
de Margerie, E. D., Robin, J. P., Verrier, D., Cubo, J., Groscolas, R., and Castanet, J. (2004). Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). The Journal of Experimental Biology 207, 869–879.
| Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus).Crossref | GoogleScholarGoogle Scholar |
de Ricqlès, A. J. (2011). Vertebrate palaeohistology: past and future. Comptes Rendus Palévol 10, 509–515.
| Vertebrate palaeohistology: past and future.Crossref | GoogleScholarGoogle Scholar |
Felder, A. A., Phillips, C., Cornish, H., Cooke, M., Hutchinson, J. R., and Doube, M. (2017). Secondary osteons scale allometrically in mammalian humerus and femur. Royal Society Open Science 4, 170431.
| Secondary osteons scale allometrically in mammalian humerus and femur.Crossref | GoogleScholarGoogle Scholar | 29291052PubMed |
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J. D., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A. (1990). Microstructure and mineralization of vertebrate skeletal tissues. In ‘Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends’. (Ed. J. G. Carter.) pp. 471–530. (Van Nostrand Reinhold: New York.)
Hedges, R. E., Millard, A. R., and Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22, 201–209.
| Measurements and relationships of diagenetic alteration of bone from three archaeological sites.Crossref | GoogleScholarGoogle Scholar |
Hogg, R. T., Bromage, T. G., Goldman, H. M., Katris, J. A., and Clement, J. G. (2017). The Havers–Halberg oscillation and bone metabolism. In ‘Building Bones: Bone Formation and Development in Anthropology’. (Eds C. J. Percival, and J. T. Richtsmeier.) pp. 254–280. (Cambridge University Press.)
Huttenlocker, A. K., Woodward, H. N., and Hall, B. K. (2013). The biology of bone. In ‘Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation’. (Eds K. Padian, and E.-T. Lamm.) pp. 13–34. (University of California Press: Berkeley, CA.)
Johnson, C. N. (1998). The evolutionary ecology of wombats. In ‘Wombats’. (Eds R. T. Wells, and P. A. Pridmore.) pp. 34–41. (Surrey Beatty & the Royal Zoological Society of South Australia: Sydney.)
Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J., and Turner-Walker, G. (2018). Diagenesis of archaeological bone and tooth. Palaeogeography, Palaeoclimatology, Palaeoecology 491, 21–37.
| Diagenesis of archaeological bone and tooth.Crossref | GoogleScholarGoogle Scholar |
Kershaw, P., Moss, P., and Van Der Kaars, S. (2003). Causes and consequences of long‐term climatic variability on the Australian continent. Freshwater Biology 48, 1274–1283.
| Causes and consequences of long‐term climatic variability on the Australian continent.Crossref | GoogleScholarGoogle Scholar |
Lee, T. C., Staines, A., and Taylor, D. (2002). Bone adaptation to load: microdamage as a stimulus for bone remodelling. Journal of Anatomy 201, 437–446.
| Bone adaptation to load: microdamage as a stimulus for bone remodelling.Crossref | GoogleScholarGoogle Scholar | 12489756PubMed |
Lee, A. H., Huttenlocker, A. K., Padian, K., and Woodward, H. N. (2013). Analysis of growth rates. In ‘Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation’. (Eds K. Padian, and E.-T. Lamm.) pp. 217–252. (University of California Press: Berkeley, CA.)
Legendre, L. J., and Botha-Brink, J. (2018). Digging the compromise: investigating the link between limb bone histology and fossoriality in the aardvark (Orycteropus afer). PeerJ 6, e5216.
| Digging the compromise: investigating the link between limb bone histology and fossoriality in the aardvark (Orycteropus afer).Crossref | GoogleScholarGoogle Scholar | 30018860PubMed |
Louys, J. (2015). Wombats (Vombatidae: Marsupialia) from the Pliocene Chinchilla Sand, southeast Queensland, Australia. Alcheringa: An Australasian Journal of Palaeontology 39, 394–406.
| Wombats (Vombatidae: Marsupialia) from the Pliocene Chinchilla Sand, southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |
Mallett, K., and Cooke, B. D. (1986). ‘The Ecology of the Common Wombat in South Australia.’ (Nature Conservation Society of South Australia: Adelaide.)
Marenzana, M., and Arnett, T. R. (2013). The key role of the blood supply to bone. Bone Research 1, 203–215.
| The key role of the blood supply to bone.Crossref | GoogleScholarGoogle Scholar | 26273504PubMed |
Marín-Moratalla, N., Jordana, X., and Köhler, M. (2013). Bone histology as an approach to providing data on certain key life history traits in mammals: implications for conservation biology. Mammalian Biology 78, 422–429.
| Bone histology as an approach to providing data on certain key life history traits in mammals: implications for conservation biology.Crossref | GoogleScholarGoogle Scholar |
McIlroy, J. C. (1973). Aspects of the ecology of the common wombat Vombatus ursinus (Shaw, 1800). Ph.D. Thesis, Australian National University, Canberra.
McMahon, C. R., Buscot, M. J., Wiggins, N. L., Collier, N., Maindonald, J. H., McCallum, H. I., and Bowman, D. M. (2011). A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii. PLoS One 6, e24934.
| A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii.Crossref | GoogleScholarGoogle Scholar | 22022369PubMed |
McNab, B. K. (1979). The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60, 1010–1021.
| The influence of body size on the energetics and distribution of fossorial and burrowing mammals.Crossref | GoogleScholarGoogle Scholar |
Miszkiewicz, J. J., Louys, J., and O’Connor, S. (2019). Microanatomical record of cortical bone remodeling and high vascularity in a fossil giant rat midshaft femur. The Anatomical Record 302, 1934–1940.
| Microanatomical record of cortical bone remodeling and high vascularity in a fossil giant rat midshaft femur.Crossref | GoogleScholarGoogle Scholar | 31265766PubMed |
Miszkiewicz, J. J., Louys, J., Beck, R. M. D., Mahoney, P., Aplin, K., and O’Connor, S. (2020). Island rule and bone metabolism in fossil murines from Timor. Biological Journal of the Linnean Society. Linnean Society of London 129, 570–586.
| Island rule and bone metabolism in fossil murines from Timor.Crossref | GoogleScholarGoogle Scholar |
Montoya‐Sanhueza, G., and Chinsamy, A. (2017). Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening. Journal of Anatomy 230, 203–233.
| Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening.Crossref | GoogleScholarGoogle Scholar | 27682432PubMed |
Murray, P. F. (1998). Palaeontology and palaeobiology of wombats. In ‘Wombats’. (Eds R. T. Wells, and P. A. Pridmore.) pp. 1–33. (Surrey Beatty & the Royal Zoological Society of South Australia: Sydney.)
Noonan, M. J., Newman, C., Buesching, C. D., and Macdonald, D. W. (2015). Evolution and function of fossoriality in the Carnivora: implications for group-living. Frontiers in Ecology and Evolution 3, 116.
| Evolution and function of fossoriality in the Carnivora: implications for group-living.Crossref | GoogleScholarGoogle Scholar |
Padian, K., and Lamm, E.-T. (Eds) (2013). ‘Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation.’ (University of California Press: berkeley, CA.)
Padian, K., de Ricqlès, A. J., and Horner, J. R. (2001). Dinosaurian growth rates and bird origins. Nature 412, 405.
| Dinosaurian growth rates and bird origins.Crossref | GoogleScholarGoogle Scholar | 11473307PubMed |
Robling, A. G., Castillo, A. B., and Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering 8, 455–498.
| Biomechanical and molecular regulation of bone remodeling.Crossref | GoogleScholarGoogle Scholar | 16834564PubMed |
Scott, G. G., and Richardson, K. C. (1987). Appendicular osteological differences between Lasiorhinus latifrons (Owen, 1845) and Vombatus ursinus (Shaw, 1800) (Marsupialia: Vombatidae). Records of the South Australian Museum 22, 95–102.
Shapiro, F., and Wu, J. Y. (2019). Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups. European Cells & Materials 38, 137.
| Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups.Crossref | GoogleScholarGoogle Scholar |
Singer, B. S. (2014). A Quaternary geomagnetic instability time scale. Quaternary Geochronology 21, 29–52.
| A Quaternary geomagnetic instability time scale.Crossref | GoogleScholarGoogle Scholar |
Slon, V., Stein, D., Cohen, H., Medlej, B., Peled, N., and Hershkovitz, I. (2014). Hyperostotic bone disease in a wombat (Vombatus ursinus). Research in Veterinary Science 97, 88–95.
| Hyperostotic bone disease in a wombat (Vombatus ursinus).Crossref | GoogleScholarGoogle Scholar | 24856454PubMed |
Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D., and Sánchez-Villagra, M. R. (2013). Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS One 8, e69275.
| Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.Crossref | GoogleScholarGoogle Scholar | 23874932PubMed |
Vleck, D. (1979). The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiological Zoology 52, 122–136.
| The energy cost of burrowing by the pocket gopher Thomomys bottae.Crossref | GoogleScholarGoogle Scholar |
Volkmann, G. (2017). Comparative osteohistological analysis of two mesopredators Didelphis virginiana and Procyon lotor. M.Sc. Thesis, Oklahoma State University, Stillwater, OK.
von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Peabody Museum of Archaeology and Ethnology 1, 1–137.
Walker, J. M., and Berger, R. J. (1980). The ontogenesis of sleep states, thermogenesis, and thermoregulation in the Virginia opossum. Developmental Psychobiology 13, 443–454.
| The ontogenesis of sleep states, thermogenesis, and thermoregulation in the Virginia opossum.Crossref | GoogleScholarGoogle Scholar | 7409325PubMed |
Warburton, N. M., Grégoire, L., Jacques, S., and Flandrin, C. (2013). Adaptations for digging in the forelimb muscle anatomy of the southern brown bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis). Australian Journal of Zoology 61, 402–419.
| Adaptations for digging in the forelimb muscle anatomy of the southern brown bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis).Crossref | GoogleScholarGoogle Scholar |
Warshaw, J., Bromage, T. G., Terranova, C. J., and Enlow, D. H. (2017). Collagen fiber orientation in primate long bones. The Anatomical Record 300, 1189–1207.
| Collagen fiber orientation in primate long bones.Crossref | GoogleScholarGoogle Scholar | 28205407PubMed |
Wells, R. T. (1973). Physiological and behavioural adaptions of the hairy-nosed wombat (Lasiorhinus latifrons Owen) to its arid environment. Ph.D. Thesis, University of Adelaide.
Wells, R. T. (1978). Thermoregulation and activity rhythms in the hairy-nosed wombat, Lasiorhinus latifrons (Owen) (Vombatidae). Australian Journal of Zoology 26, 639–651.
| Thermoregulation and activity rhythms in the hairy-nosed wombat, Lasiorhinus latifrons (Owen) (Vombatidae).Crossref | GoogleScholarGoogle Scholar |
Wells, R. T. (1989). Vombatidae. In ‘Fauna of Australia. Vol 1B. Mammalia’. (Eds B. J. Richardson, and D. Walton.) pp. 755–768. (Australian Government Publishing Services: Canberra.)
Werning, S. A. (2013). Evolution of bone histological characters in amniotes, and the implications for the evolution of growth and metabolism. Ph.D. Thesis, University of California, Berkeley, CA.
Withers, P. C. (1972). Physiological adaptations of the hairy-nosed wombat, Lasiorhinus latifrons, to its fossorial habit. B.Sc.(Honours) Thesis, University of Adelaide.
Woodward, H. N., Padian, K., and Lee, H. (2013). Skeletochronology. In ‘Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation’. (Eds K. Padian, and E.-T. Lamm.) pp. 195–215. (University of California Press: Berkeley, CA.)
Woolnough, A. P., and Steele, V. R. (2001). The palaeoecology of the Vombatidae: did giant wombats burrow? Mammal Review 31, 33–45.
| The palaeoecology of the Vombatidae: did giant wombats burrow?Crossref | GoogleScholarGoogle Scholar |