Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Environmental temperature influences detectability of a nocturnal marsupial

Gillian N. Kowalick A * , Alexandra K. Ross https://orcid.org/0000-0003-0510-6667 A and Helen A. Crisp A
+ Author Affiliations
- Author Affiliations

A Australian Wildlife Conservancy, PO Box 8070, Subiaco East, WA 6008, Australia.


Handling Editor: Ross Goldingay

Australian Mammalogy 46, AM24005 https://doi.org/10.1071/AM24005
Submitted: 26 February 2024  Accepted: 3 August 2024  Published: 23 August 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Mammals have a range of strategies designed to maintain optimal body temperature regardless of environmental temperature. One energy-efficient strategy is to avoid environmental temperature extremes by modifying active periods. Reduced animal activity can result in fewer detections of target species during surveys that require direct observation of individuals. Observations of the greater bilby (Macrotis lagotis) from 8 years of survey data were investigated to determine the impact of environmental temperature and season on bilby detectability. Bilby observations were positively correlated with temperature regardless of season. Wildlife managers should consider minimum environmental temperatures when planning surveys and analysing observational data.

Keywords: activity, behaviour, bilby, conservation, marsupial, monitoring methods, observational data, semi-arid, spotlight survey, temperature.

References

Angilletta Jr, M. J., Cooper, B. S., Schuler, M. S., and Boyles, J. G. (2010). The evolution of thermal physiology in endotherms. Frontiers in Bioscience 2, 861-881.
| Crossref | Google Scholar | PubMed |

Augusteyn, J., Pople, A., and Rich, M. (2020). Evaluating the use of thermal imaging cameras to monitor the endangered greater bilby at Astrebla Downs National Park. Australian Mammalogy 42, 329-340.
| Crossref | Google Scholar |

Bell, D. (1998). ‘Ngarrindjeri Wurruwarrin: a world that is, was, and will be.’ (Spinifex: North Melbourne, Australia.)

Bennie, J. J., Duffy, J. P., Inger, R., and Gaston, K. J. (2014). Biogeography of time partitioning in mammals. Proceedings of the National Academy of Sciences 111, 13727-13732.
| Crossref | Google Scholar | PubMed |

Berris, K. K., Cooper, S. J. B., Breed, W. G., Berris, J. R., and Carthew, S. M. (2021). Burrow use by bilbies in temperate South Australia. Australian Mammalogy 44, 256-265.
| Crossref | Google Scholar |

Berry, L. E., L’Hotellier, F. A., Carter, A., Kemp, L., Kavanagh, R. P., and Roshier, D. A. (2019). Patterns of habitat use by three threatened mammals 10 years after reintroduction into a fenced reserve free of introduced predators. Biological Conservation 230, 1-9.
| Crossref | Google Scholar |

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling: Estimating Abundance of Biological Populations.’ (Oxford University Press.)

Bureau to Meteorology (n.d.) Climate Data Online. http://www.bom.gov.au/climate/data

Buxton, P. A. (1924). The temperature of the surface of deserts. The Journal of Ecology 12, 127-134.
| Crossref | Google Scholar |

Camilo‐Alves, C. D. S. E. P., and Mourão, G. D. M. (2006). Responses of a specialized insectivorous mammal (Myrmecophaga tridactyla) to variation in ambient temperature. Biotropica 38, 52-56.
| Crossref | Google Scholar |

Carver, S., Charleston, M., Hocking, G., Gales, R., and Driessen, M. M. (2021). Long‐term spatiotemporal dynamics and factors associated with trends in bare‐nosed wombats. The Journal of Wildlife Management 85, 449-461.
| Crossref | Google Scholar |

Chapman, T. F. (2013). Relic bilby (Macrotis lagotis) refuge burrows: assessment of potential contribution to a rangeland restoration program. The Rangeland Journal 35, 167-180.
| Crossref | Google Scholar |

Cornelsen, K. (2023). Behavioural ecology of the greater bilby (Macrotis lagotis) and conservation tool development in a semi-wild sanctuary. PhD Thesis, University of New South Wales Sydney, Australia.

Dawson, W. R., Pinshow, B., Bartholomew, G. A., Seely, M. K., Shkolnik, A., Shoemaker, V. H., and Teeri, J. A. (1989). What’s special about the physiological ecology of desert organisms? Journal of Arid Environments 17, 131-143.
| Crossref | Google Scholar |

Dawson, S. J., Broussard, L., Adams, P. J., Moseby, K. E., Waddington, K. I., Kobryn, H. T., Bateman, P. W., and Fleming, P. A. (2019). An outback oasis: the ecological importance of bilby burrows. Journal of Zoology 308, 149-163.
| Crossref | Google Scholar |

Fuller, A., Mitchell, D., Maloney, S. K., and Hetem, R. S. (2016). Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Climate Change Responses 3, 10.
| Crossref | Google Scholar |

Geiser, F. (2004). The role of torpor in the life of Australian arid zone mammals. Australian Mammalogy 26, 125-134.
| Crossref | Google Scholar |

Geiser, F., and Cooper, C. E. (2023). Daily Torpor, Hibernation, and Heterothermy in Marsupials. In ‘American and Australasian Marsupials’. (Eds N. C. Cáceres, C. R. Dickman.) pp. 1–28. (Springer International Publishing: Cham.)

Geiser, F., and Körtner, G. (2010). Hibernation and daily torpor in Australian mammals. Australian Zoologist 35, 204-215.
| Crossref | Google Scholar |

Gibson, L. A., and Hume, I. D. (2000). Seasonal field energetics and water influx rates of the greater bilby (Macrotis lagotis). Australian Journal of Zoology 48, 225-239.
| Crossref | Google Scholar |

Giné, G. A. F., Cassano, C. R., De Almeida, S. S., and Faria, D. (2015). Activity budget, pattern and rhythm of maned sloths (Bradypus torquatus): Responses to variations in ambient temperature. Mammalian Biology 80, 459-467.
| Crossref | Google Scholar |

Hofstede, L., and Dziminski, M. A. (2017). Greater bilby burrows: important structures for a range of species in an arid environment. Australian Mammalogy 39, 227-237.
| Crossref | Google Scholar |

Holm, E., and Edney, E. B. (1973). Daily activity of Namib Desert arthropods in relation to climate. Ecology 54, 45-56.
| Crossref | Google Scholar |

Hume, T., Geiser, F., Currie, S. E., Körtner, G., and Stawski, C. (2020). Responding to the weather: energy budgeting by a small mammal in the wild. Current Zoology 66, 15-20.
| Crossref | Google Scholar |

Jastroch, M., Giroud, S., Barrett, P., Geiser, F., Heldmaier, G., and Herwig, A. (2016). Seasonal control of mammalian energy balance: recent advances in the understanding of daily torpor and hibernation. Journal of Neuroendocrinology 28, jne.12437.
| Crossref | Google Scholar | PubMed |

Johnson, K. A. (2008). Bilby, Macrotis lagotis. In ‘Mammals of Australia’. (Eds S. van Dyke, R. Straham.) pp. 191–193. (Reed New Holland Publishing: Sydney.)

Jones, F. W. (1923). ‘The Mammals of South Australia’. (Government Printer: Adelaide.)

Kavanagh, R. P., and Rohan-Jones, W. G. (1982). (Marsupialia: Petauridae). Australian Mammalogy 5, 95-111.
| Crossref | Google Scholar |

Kenagy, G. J., Nespolo, R. F., Vásquez, R. A., and Bozinovic, F. (2002). Daily and seasonal limits of time and temperature to activity of degus. Revista Chilena de Historia Natural 75, 567-581.
| Crossref | Google Scholar |

Kinnear, A., and Shield, J. W. (1975). Metabolism and temperature regulation in Marsupials. Comparative Biochemistry and Physiology Part A: Physiology 52, 235-245.
| Crossref | Google Scholar | PubMed |

Körtner, G., and Geiser, F. (2011). Activity and torpor in two sympatric Australian desert marsupials. Journal of Zoology 283, 249-256.
| Crossref | Google Scholar |

Körtner, G., Pavey, C. R., and Geiser, F. (2008). Thermal biology, torpor, and activity in free‐living mulgaras in arid zone australia during the winter reproductive season. Physiological and Biochemical Zoology 81, 442-451.
| Crossref | Google Scholar | PubMed |

Laurance, W. F. (1990). Effects of weather on marsupial folivore activity in a north Queensland upland tropical rainforest. Australian Mammalogy 13, 41-47.
| Crossref | Google Scholar |

Lovegrove, B. G. (2003). The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology B 173, 87-112.
| Crossref | Google Scholar | PubMed |

McCracken, H. E. (1986). Observations on the estrous cycle and gestation period of the Greater Bilby Macrotis lagotis Marsupialia: Thylacomyidae. Australian Mammalogy 9, 5-16.
| Crossref | Google Scholar |

McGregor, H., Moseby, K., Johnson, C. N., and Legge, S. (2021). Effectiveness of thermal cameras compared to spotlights for counts of arid zone mammals across a range of ambient temperatures. Australian Mammalogy 44, 59-66.
| Crossref | Google Scholar |

Navnith, M., Finlayson, G., Crowther, M., and Dickman, C. (2009). The diet of the re-introduced greater bilby Macrotis lagotis in the mallee woodlands of western New South Wales. Australian Zoologist 35, 90-95.
| Crossref | Google Scholar |

Newell, J. (2008). The role of the reintroduction of greater bilbies (Macrotis lagotis) and burrowing bettongs (Bettongia lesueur) in the ecological restoration of an arid ecosystem: foraging diggings, diet, and soil seed banks. PhD Thesis, University of Adelaide, Adelaide, Australia.

Oosthuizen, M. K., and Bennett, N. C. (2015). The effect of ambient temperature on locomotor activity patterns in reproductive and non‐reproductive female Damaraland mole‐rats. Journal of Zoology 297, 1-8.
| Crossref | Google Scholar |

Ruzicka, R. E., and Conover, M. R. (2011). Influence of wind and humidity on foraging behavior of olfactory mesopredators. Canadian Field-Naturalist 125, 132-139.
| Crossref | Google Scholar |

Schwimmer, H., and Haim, A. (2009). Physiological adaptations of small mammals to desert ecosystems. Integrative Zoology 4, 357-366.
| Crossref | Google Scholar | PubMed |

Song, X., Körtner, G., and Geiser, F. (1998). Temperature selection and use of torpor by the marsupial Sminthopsis macroura. Physiology & Behavior 64, 675-682.
| Crossref | Google Scholar | PubMed |

Song, X., Körtner, G., and Geiser, F. (2000). Temperature selection and energy expenditure in the marsupial hibernator Cercartetus nanus. In ‘Life in the Cold’. (Eds G. Heldmaier, M. Klingenspor.) 11th International Hibernation Symposium. pp. 199–126. (Springer Berlin Heidelberg)

Southgate, R., and Carthew, S. M. (2006). Diet of the bilby (Macrotis lagotis) in relation to substrate, fire and rainfall characteristics in the Tanami Desert. Wildlife Research 33, 507-518.
| Crossref | Google Scholar |

Southgate, R. I., Christie, P., and Bellchambers, K. (2000). Breeding biology of captive, reintroduced and wild greater bilbies, Macrotis lagotis (Marsupialia : Peramelidae). Wildlife Research 27, 621-628.
| Crossref | Google Scholar |

Stawski, C., and Geiser, F. (2020). Growing up in a changing climate: how temperature affects the development of morphological, behavioral and physiological traits of a marsupial mammal. Frontiers in Physiology 11, 49.
| Crossref | Google Scholar | PubMed |

Stokes, M. K., Slade, N. A., and Blair, S. M. (2001). Influences of weather and moonlight on activity patterns of small mammals: a biogeographical perspective. Canadian Journal of Zoology 79, 966-972.
| Crossref | Google Scholar |

Terrien, J., Perret, M., and Aujard, F. (2011). Behavioral thermoregulation in mammals: a review. Frontiers in Bioscience 16, 1428-1444.
| Crossref | Google Scholar | PubMed |

Thums, M., Klaassen, M., and Hume, I. D. (2005). Seasonal changes in the diet of the long-nosed bandicoot (Perameles nasuta) assessed by analysis of faecal scats and of stable isotopes in blood. Australian Journal of Zoology 53, 87-93.
| Crossref | Google Scholar |

Vaanholt, L. M., Garland, T., Daan, S., and Visser, G. H. (2007). Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity. Journal of Comparative Physiology B 177, 109-118.
| Crossref | Google Scholar | PubMed |

Vickery, W. L., and Bider, J. R. (1981). The influence of weather on rodent activity. Journal of Mammalogy 62, 140-145.
| Crossref | Google Scholar |

Wayne, A. F., Cowling, A., Rooney, J. F., Ward, C. G., Wheeler, I. B., Lindenmayer, D. B., and Donnelly, C. F. (2005). Factors affecting the detection of possums by spotlighting in Western Australia. Wildlife Research 32, 689-700.
| Crossref | Google Scholar |

Withers, P. C., Cooper, C. E., and Larcombe, A. N. (2006). Environmental correlates of physiological variables in marsupials. Physiological and Biochemical Zoology 79, 437-453.
| Crossref | Google Scholar | PubMed |