Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Not waiting for the death knell: a pilot study to examine supplementation and survivorship in a declining population of Tasmanian eastern quoll (Dasyurus viverrinus)

Rowena P. Hamer https://orcid.org/0000-0002-9063-5426 A B * , Natasha Robinson https://orcid.org/0000-0003-0421-8683 C , Rob Brewster https://orcid.org/0000-0001-5068-8614 D , Molly Barlow https://orcid.org/0000-0003-0850-6498 D , Morrigan Guinane E , Morgan Humphrey B , Adrian Mifsud E , David G. Hamilton https://orcid.org/0000-0001-5883-0136 A B and Alex S. Kutt https://orcid.org/0000-0001-9679-2206 A B F
+ Author Affiliations
- Author Affiliations

A Tasmanian Land Conservancy, Hobart, Tas. 7005, Australia.

B School of Natural Sciences, University of Tasmania, Hobart, Tas. 7005, Australia.

C Fenner School of Environment & Society, Australian National University, Canberra, ACT 2601, Australia.

D WWF-Australia, PO Box 528, Sydney, NSW 2001, Australia.

E Trowunna Wildlife Sanctuary, 1892 Mole Creek Road, Mole Creek, Tas. 7304, Australia.

F School of BioSciences, University of Melbourne, Parkville, Vic. 3010, Australia.

* Correspondence to: rowena.hamer@utas.edu.au

Handling Editor: Ross Goldingay

Australian Mammalogy 45(2) 171-180 https://doi.org/10.1071/AM22011
Submitted: 19 March 2022  Accepted: 7 October 2022   Published: 27 October 2022

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Tasmanian populations of the eastern quoll (Dasyurus viverrinus) represent the last wild stronghold of this species after its extirpation from the Australian mainland, but they have experienced declines of more than 50% over the past three decades. We investigated the feasibility of supplementing wild populations with captive-bred individuals in attempts to halt and reverse observed declines in Tasmanian populations. We released 20 captive-bred eastern quolls into an extant wild population in the Tasmanian central plateau, and monitored their short-term survival, dispersal and body condition. We recorded high initial survival and low initial dispersal of captive-bred individuals relative to previous release attempts in unfenced areas of mainland Australia. Further work to determine long-term survival of released individuals, and the genetic and population-level impacts on local populations is ongoing. Our preliminary results support the use of population supplementation as an effective conservation action, which allows for early intervention to address species declines while testing hypotheses about their underlying causes.

Keywords: captive release, conservation translocation, Dasyuridae, eastern quoll, population supplementation, reintroduction, rewilding, threatened species.


References

Barlow, M. M., Johnson, C. N., McDowell, M. C., Fielding, M. W., Amin, R. J., and Brewster, R. (2021). Species distribution models for conservation: identifying translocation sites for eastern quolls under climate change. Global Ecology and Conservation 29, e01735.
Species distribution models for conservation: identifying translocation sites for eastern quolls under climate change.Crossref | GoogleScholarGoogle Scholar |

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 48.
Fitting Linear Mixed-Effects Models Using lme4.Crossref | GoogleScholarGoogle Scholar |

Berger-Tal, O., Blumstein, D. T., and Swaisgood, R. R. (2020). Conservation translocations: a review of common difficulties and promising directions. Animal Conservation 23, 121–131.
Conservation translocations: a review of common difficulties and promising directions.Crossref | GoogleScholarGoogle Scholar |

Brakes, P., Carroll, E. L., Dall, S. R. X., Keith, S. A., McGregor, P. K., Mesnick, S. L., Noad, M. J., Rendell, L., Robbins, M. M., Rutz, C., Thornton, A., Whiten, A., Whiting, M. J., Aplin, L. M., Bearhop, S., Ciucci, P., Fishlock, V., Ford, J. K. B., Notarbartolo di Sciara, G., Simmonds, M. P., Spina, F., Wade, P. R., Whitehead, H., Williams, J., and Garland, E. C. (2021). A deepening understanding of animal culture suggests lessons for conservation. Proceedings of the Royal Society B: Biological Sciences 288, 20202718.
A deepening understanding of animal culture suggests lessons for conservation.Crossref | GoogleScholarGoogle Scholar |

Brichieri-Colombi, T. A., and Moehrenschlager, A. (2016). Alignment of threat, effort, and perceived success in North American conservation translocations. Conservation Biology 30, 1159–1172.
Alignment of threat, effort, and perceived success in North American conservation translocations.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach’, 2nd edn. (Springer-Verlag: New York.)

Byrne, P. G., and Silla, A. J. (2020). An experimental test of the genetic consequences of population augmentation in an amphibian. Conservation Science and Practice 2, e194.
An experimental test of the genetic consequences of population augmentation in an amphibian.Crossref | GoogleScholarGoogle Scholar |

Canessa, S., Taylor, G., Clarke, R. H., Ingwersen, D., Vandersteen, J., and Ewen, J. G. (2020). Risk aversion and uncertainty create a conundrum for planning recovery of a critically endangered species. Conservation Science and Practice 2, e138.
Risk aversion and uncertainty create a conundrum for planning recovery of a critically endangered species.Crossref | GoogleScholarGoogle Scholar |

Cardoso, M. J., Mooney, N., Eldridge, M. D. B., Firestone, K. B., and Sherwin, W. B. (2014). Genetic monitoring reveals significant population structure in eastern quolls: implications for the conservation of a threatened carnivorous marsupial. Australian Mammalogy 36, 169–177.
Genetic monitoring reveals significant population structure in eastern quolls: implications for the conservation of a threatened carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar |

Christian, J. J. (1970). Social Subordination, Population Density, and Mammalian Evolution. Science 168, 84–90.
Social Subordination, Population Density, and Mammalian Evolution.Crossref | GoogleScholarGoogle Scholar |

Crates, R., Rayner, L., Stojanovic, D., Webb, M., and Heinsohn, R. (2017). Undetected Allee effects in Australia’s threatened birds: implications for conservation. Emu - Austral Ornithology 117, 207–221.
Undetected Allee effects in Australia’s threatened birds: implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Cremona, T., Crowther, M. S., and Webb, J. K. (2017). High mortality and small population size prevent population recovery of a reintroduced mesopredator. Animal Conservation 20, 555–563.
High mortality and small population size prevent population recovery of a reintroduced mesopredator.Crossref | GoogleScholarGoogle Scholar |

Cunningham, C. X., Aandahl, Z., Jones, M. E., Hamer, R., and Johnson, C. N. (2022). Regional patterns of continuing decline of the eastern quoll. Australian Mammalogy , .
Regional patterns of continuing decline of the eastern quoll.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R. (2012). Fences or Ferals? Benefits and Costs of Conservation Fencing in Australia. In ‘Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes?’. (Eds M. J. Somers, and M. Hayward) pp. 43–63. (Springer New York: New York, NY.)

DPIPWE (2020). ‘TASVEG 4.0, Released July 2020.’ (Tasmanian Vegetation Monitoring and Mapping Program, Natural and Cultural Heritage Division, Department of Primary Industries, Parks, Water and the Environment.)

Evans, M. J., Batson, W. G., Gordon, I. J., Belton, E., Chaseling, T., Fletcher, D., Harrison, M., McElroy, T., Mungoven, A., Newport, J., Pierson, J., Portas, T., Swain, S., Wimpenny, C., and Manning, A. D. (2021). The ‘Goldilocks Zone’ of predation: the level of fox control needed to select predator resistance in a reintroduced mammal in Australia. Biodiversity and Conservation 30, 1731–1752.
The ‘Goldilocks Zone’ of predation: the level of fox control needed to select predator resistance in a reintroduced mammal in Australia.Crossref | GoogleScholarGoogle Scholar |

Fancourt, B. A. (2016). Diagnosing species decline: a contextual review of threats, causes and future directions for management and conservation of the eastern quoll. Wildlife Research 43, 197–211.
Diagnosing species decline: a contextual review of threats, causes and future directions for management and conservation of the eastern quoll.Crossref | GoogleScholarGoogle Scholar |

Fancourt, B. A., Hawkins, C. E., and Nicol, S. C. (2013). Evidence of rapid population decline of the eastern quoll (Dasyurus viverrinus) in Tasmania. Australian Mammalogy 35, 195–205.
Evidence of rapid population decline of the eastern quoll (Dasyurus viverrinus) in Tasmania.Crossref | GoogleScholarGoogle Scholar |

Fancourt, B. A., Bateman, B. L., VanDerWal, J., Nicol, S. C., Hawkins, C. E., Jones, M. E., and Johnson, C. N. (2015). Testing the Role of Climate Change in Species Decline: Is the Eastern Quoll a Victim of a Change in the Weather? PLoS One 10, e0129420.
Testing the Role of Climate Change in Species Decline: Is the Eastern Quoll a Victim of a Change in the Weather?Crossref | GoogleScholarGoogle Scholar |

Fancourt, B. A., Hawkins, C. E., and Nicol, S. C. (2018). Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildlife Research 45, 737–750.
Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll.Crossref | GoogleScholarGoogle Scholar |

Fischer, J., and Lindenmayer, D. B. (2000). An assessment of the published results of animal relocations. Biological Conservation 96, 1–11.
An assessment of the published results of animal relocations.Crossref | GoogleScholarGoogle Scholar |

Geyle, H. M., Woinarski, J. C. Z., Baker, G. B., Dickman, C. R., Dutson, G., Fisher, D. O., Ford, H., Holdsworth, M., Jones, M. E., Kutt, A., Legge, S., Leiper, I., Loyn, R., Murphy, B. P., Menkhorst, P., Reside, A. E., Ritchie, E. G., Roberts, F. E., Tingley, R., and Garnett, S. T. (2018). Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology 24, 157–167.
Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions.Crossref | GoogleScholarGoogle Scholar |

Gómez-Rubio, V. (2020). ‘Bayesian Inference with INLA.’ (Chapman & Hall/CRC Press: Boca Raton, FL.)

Griffith, B., Scott, J. M., Carpenter, J. W., and Reed, C. (1989). Translocation as a Species Conservation Tool: Status and Strategy. Science 245, 477–480.
Translocation as a Species Conservation Tool: Status and Strategy.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E. (2000). Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils. Wildlife Research 27, 289–296.
Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., and Rose, R. K. (2001). Dasyurus viverrinus. Mammalian Species 677, 1–9.
Dasyurus viverrinus.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D. B., and Taylor, C. (2020). New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481–12485.
New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D. B., Wood, J., MacGregor, C., Foster, C., Scheele, B., Tulloch, A., Barton, P., Banks, S., Robinson, N., Dexter, N., O’Loughlin, L. S., and Legge, S. (2018). Conservation conundrums and the challenges of managing unexplained declines of multiple species. Biological Conservation 221, 279–292.
Conservation conundrums and the challenges of managing unexplained declines of multiple species.Crossref | GoogleScholarGoogle Scholar |

Lindgren, F., and Rue, H. (2015). Bayesian Spatial Modelling with R-INLA. Journal of Statistical Software 63, 1–25.
Bayesian Spatial Modelling with R-INLA.Crossref | GoogleScholarGoogle Scholar |

Macdonald, D. W. (1983). The ecology of carnivore social behaviour. Nature 301, 379–384.
The ecology of carnivore social behaviour.Crossref | GoogleScholarGoogle Scholar |

Martin, T. G., Nally, S., Burbidge, A. A., Arnall, S., Garnett, S. T., Hayward, M. W., Lumsden, L. F., Menkhorst, P., McDonald-Madden, E., and Possingham, H. P. (2012). Acting fast helps avoid extinction. Conservation Letters 5, 274–280.
Acting fast helps avoid extinction.Crossref | GoogleScholarGoogle Scholar |

Maxwell, S. L., Butt, N., Maron, M., McAlpine, C. A., Chapman, S., Ullmann, A., Segan, D. B., and Watson, J. E. M. (2019). Conservation implications of ecological responses to extreme weather and climate events. Diversity and Distributions 25, 613–625.
Conservation implications of ecological responses to extreme weather and climate events.Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (1963). Bioenergetics and the Determination of Home Range Size. The American Naturalist 97, 133–140.
Bioenergetics and the Determination of Home Range Size.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Read, J. L., Paton, D. C., Copley, P., Hill, B. M., and Crisp, H. A. (2011). Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biological Conservation 144, 2863–2872.
Predation determines the outcome of 10 reintroduction attempts in arid South Australia.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Hill, B. M., and Lavery, T. H. (2014). Tailoring Release Protocols to Individual Species and Sites: One Size Does Not Fit All. PLoS One 9, e99753.
Tailoring Release Protocols to Individual Species and Sites: One Size Does Not Fit All.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Letnic, M., Blumstein, D. T., and West, R. (2019). Understanding predator densities for successful co-existence of alien predators and threatened prey. Austral Ecology 44, 409–419.
Understanding predator densities for successful co-existence of alien predators and threatened prey.Crossref | GoogleScholarGoogle Scholar |

Oakwood, M. (2000). Reproduction and demography of the northern quoll, Dasyurus hallucatus, in the lowland savanna of northern Australia. Australian Journal of Zoology 48, 519–539.
Reproduction and demography of the northern quoll, Dasyurus hallucatus, in the lowland savanna of northern Australia.Crossref | GoogleScholarGoogle Scholar |

Peacock, D., and Abbott, I. (2014). When the ‘native cat’ would ‘plague’: historical hyperabundance in the quoll (Marsupialia: Dasyuridae) and an assessment of the role of disease, cats and foxes in its curtailment. Australian Journal of Zoology 62, 294–344.
When the ‘native cat’ would ‘plague’: historical hyperabundance in the quoll (Marsupialia: Dasyuridae) and an assessment of the role of disease, cats and foxes in its curtailment.Crossref | GoogleScholarGoogle Scholar |

Portas, T. J., Evans, M. J., Spratt, D., Vaz, P. K., Devlin, J. M., Barbosa, A. D., Wilson, B. A., Rypalski, A., Wimpenny, C., Fletcher, D., Gordon, I. J., Newport, J., and Manning, A. D. (2020). Baseline health and disease assessment of founder eastern quolls (Dasyurus viverrinus) during a conservation translocation to mainland Australia. Journal of Wildlife Diseases 56, 547–559.
Baseline health and disease assessment of founder eastern quolls (Dasyurus viverrinus) during a conservation translocation to mainland Australia.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2021). ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at https://www.R-project.org/

Robinson, N. M., Blanchard, W., MacGregor, C., Brewster, R., Dexter, N., and Lindenmayer, D. B. (2020a). Finding food in a novel environment: The diet of a reintroduced endangered meso-predator to mainland Australia, with notes on foraging behaviour. PLoS One 15, e0243937.
Finding food in a novel environment: The diet of a reintroduced endangered meso-predator to mainland Australia, with notes on foraging behaviour.Crossref | GoogleScholarGoogle Scholar |

Robinson, N. M., Dexter, N., Brewster, R., Maple, D., MacGregor, C., Rose, K., Hall, J., and Lindenmayer, D. B. (2020b). Be nimble with threat mitigation: lessons learned from the reintroduction of an endangered species. Restoration Ecology 28, 29–38.
Be nimble with threat mitigation: lessons learned from the reintroduction of an endangered species.Crossref | GoogleScholarGoogle Scholar |

Robinson, N. M., Blanchard, W., MacGregor, C., Brewster, R., Dexter, N., and Lindenmayer, D. B. (2021). Can evolutionary theories of dispersal and senescence predict postrelease survival, dispersal, and body condition of a reintroduced threatened mammal? Ecology and Evolution 11, 1002–1012.
Can evolutionary theories of dispersal and senescence predict postrelease survival, dispersal, and body condition of a reintroduced threatened mammal?Crossref | GoogleScholarGoogle Scholar |

Rytwinski, T., Soanes, K., Jaeger, J. A. G., Fahrig, L., Findlay, C. S., Houlahan, J., van der Ree, R., and van der Grift, E. A. (2016). How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis. PLoS One 11, e0166941.
How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis.Crossref | GoogleScholarGoogle Scholar |

Scheele, B. C., Legge, S., Armstrong, D. P., Copley, P., Robinson, N., Southwell, D., Westgate, M. J., and Lindenmayer, D. B. (2018). How to improve threatened species management: An Australian perspective. Journal of Environmental Management 223, 668–675.
How to improve threatened species management: An Australian perspective.Crossref | GoogleScholarGoogle Scholar |

Sinclair, A. R. E., and Pech, R. P. (1996). Density Dependence, Stochasticity, Compensation and Predator Regulation. Oikos 75, 164–173.
Density Dependence, Stochasticity, Compensation and Predator Regulation.Crossref | GoogleScholarGoogle Scholar |

Stamps, J. A. (1988). Conspecific Attraction and Aggregation in Territorial Species. The American Naturalist 131, 329–347.
Conspecific Attraction and Aggregation in Territorial Species.Crossref | GoogleScholarGoogle Scholar |

Therneau, T. (2021). A package for Survival Analysis in R. R package version 3.2-11. Available at https://CRAN.R-project.org/package=survival

Threatened Species Scientific Committee (2015). ‘Conservation Advice Dasyurus viverrinus Eastern Quoll.’ (Department of the Environment: Canberra.)

Trochet, A., Courtois, E. A., Stevens, V. M., Baguette, M., Chaine, A., Schmeller, D. S., Clobert, J., and Wiens, J. J. (2016). Evolution of Sex-Biased Dispersal. The Quarterly Review of Biology 91, 297–320.
Evolution of Sex-Biased Dispersal.Crossref | GoogleScholarGoogle Scholar |

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27, 1413–1432.
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC.Crossref | GoogleScholarGoogle Scholar |

Ward, M., Tulloch, A. I. T., Radford, J. Q., Williams, B. A., Reside, A. E., Macdonald, S. L., Mayfield, H. J., Maron, M., Possingham, H. P., Vine, S. J., O’Connor, J. L., Massingham, E. J., Greenville, A. C., Woinarski, J. C. Z., Garnett, S. T., Lintermans, M., Scheele, B. C., Carwardine, J., Nimmo, D. G., Lindenmayer, D. B., Kooyman, R. M., Simmonds, J. S., Sonter, L. J., and Watson, J. E. M. (2020). Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology & Evolution 4, 1321–1326.
Impact of 2019–2020 mega-fires on Australian fauna habitat.Crossref | GoogleScholarGoogle Scholar |

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D. B., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar |

Weeks, A. R., Stoklosa, J., and Hoffmann, A. A. (2016). Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Frontiers in Zoology 13, 31.
Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Wilson, H. B., Joseph, L. N., Moore, A. L., and Possingham, H. P. (2011). When should we save the most endangered species? Ecology Letters 14, 886–890.
When should we save the most endangered species?Crossref | GoogleScholarGoogle Scholar |

Wilson, B. A., Evans, M. J., Batson, W. G., Banks, S. C., Gordon, I. J., Fletcher, D. B., Wimpenny, C., Newport, J., Belton, E., Rypalski, A., Portas, T., and Manning, A. D. (2020). Adapting reintroduction tactics in successive trials increases the likelihood of establishment for an endangered carnivore in a fenced sanctuary. PLoS One 15, e0234455.
Adapting reintroduction tactics in successive trials increases the likelihood of establishment for an endangered carnivore in a fenced sanctuary.Crossref | GoogleScholarGoogle Scholar |

Wilson, B. A., Evans, M. J., Gordon, I. J., Banks, S. C., Batson, W. G., Wimpenny, C., Newport, J., and Manning, A. D. (2022). Personality and plasticity predict postrelease performance in a reintroduced mesopredator. Animal Behaviour 187, 177–189.
Personality and plasticity predict postrelease performance in a reintroduced mesopredator.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences 112, 4531–4540.
Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Garnett, S. T., Legge, S. M., and Lindenmayer, D. B. (2017). The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species. Conservation Biology 31, 13–23.
The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species.Crossref | GoogleScholarGoogle Scholar |