Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Spatial ecology of the quokka (Setonix brachyurus) in the southern forests of Western Australia: implications for the maintenance, or restoration, of functional metapopulations

Karlene Bain A B , Adrian Francis Wayne C and Roberta Bencini A D
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Environment (M079), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Python Ecological Services, PO Box 355, Walpole, WA 6398, Australia.

C Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Brain Street, Manjimup, WA 6258, Australia.

D Corresponding author. Email: roberta.bencini@uwa.edu.au

Australian Mammalogy 42(1) 38-47 https://doi.org/10.1071/AM18036
Submitted: 20 September 2018  Accepted: 10 April 2019   Published: 20 June 2019

Abstract

We used radio-telemetry to investigate the home-range size and movement patterns of the quokka (Setonix brachyurus) in the southern forests of Western Australia to assess the ability of animals to move between increasingly segregated habitat patches and to identify implications for metapopulation function. We found that quokkas in this region have a much larger home range (71 ± 5.8 ha) and move larger distances (up to 10 km per night) than previously reported for this species in other regions. Temporal and sex variations in home-range size, overlap and movement patterns provided insights into the social structure, reproductive strategies and resource availability for the species in this part of its range. Quokkas moved up to 14 km between habitat patches, where these patches were connected by dense riparian vegetation. While riparian vegetation was used exclusively for movement between habitat patches, quokkas spent only 40% of their time in this ecotype. The current management paradigm of protecting linear riparian vegetation as habitat for quokkas is important for maintaining habitat connectivity, but is unlikely to meet broader habitat and spatial requirements. Management of preferred habitat as well as riparian corridors is necessary for the maintenance of a functional metapopulation.

Additional keywords: habitat connectivity, home range, metapopulation, movements, radio telemetry, riparian vegetation.


References

Bain, K. (2016). The ecology of the quokka (Setonix brachyurus) in the southern forests of Western Australia. Ph.D. Thesis, The University of Western Australia, Perth.

Bain, K., Wayne, A., and Bencini, R. (2014). Overcoming the challenges of measuring the abundance of a cryptic macropod: is a qualitative approach good enough? Wildlife Research 41, 84–93.
Overcoming the challenges of measuring the abundance of a cryptic macropod: is a qualitative approach good enough?Crossref | GoogleScholarGoogle Scholar |

Bain, K., Wayne, A., and Bencini, R. (2015). Risks in extrapolating habitat preferences over the geographical range of threatened taxa: a case study of the quokka (Setonix brachyurus) in the southern forests of Western Australia. Wildlife Research 42, 334–342.
Risks in extrapolating habitat preferences over the geographical range of threatened taxa: a case study of the quokka (Setonix brachyurus) in the southern forests of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Bain, K., Wayne, A., and Bencini, R. (2016). Prescribed burning as a conservation tool for management of habitat for threatened species: the quokka (Setonix brachyurus) in the southern forests of Western Australia. International Journal of Wildland Fire 25, 608–617.
Prescribed burning as a conservation tool for management of habitat for threatened species: the quokka (Setonix brachyurus) in the southern forests of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Beasley, J. C., Devault, T. L., Retamosa, M. I., and Rhodes, O. E. (2007). A hierarchical analysis of habitat selection by raccoons in northern Indiana. Journal of Wildlife Management 71, 1125–1133.
A hierarchical analysis of habitat selection by raccoons in northern Indiana.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach.’ 2nd edn. (Springer: New York.)

Carey, H. V. (1985). The use of foraging areas by yellow-bellied marmots. Oikos 44, 273–279.
The use of foraging areas by yellow-bellied marmots.Crossref | GoogleScholarGoogle Scholar |

Christensen, P. E. S., and Kimber, P. C. (1975). Effect of prescribed burning on the flora and fauna of south western Australian forests. Proceedings of the Ecological Society of Australia 9, 85–106.

Conservation Commission of Western Australia (2013). Forest management plan 2014–2023. Conservation Commission of Western Australia, Perth.

Coops, N. C., Waring, R. H., and Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management 104, 113–127.
Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity.Crossref | GoogleScholarGoogle Scholar |

D & L Software Pty Ltd (undated). Ozi Explorer version 3.95.5. Available at: http://www.oziexplorer.com/

de Tores, P., Burbidge, A., Morris, K., and Friend, T. (2008). Setonix brachyurus. In ‘IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2’. Available at: http://www.iucnredlist.org

Department of Environment and Conservation (2013). Quokka (Setonix brachyurus) recovery plan. Western Australian Wildlife Management Program No. 56. Department of Environment and Conservation, Perth.

Dundas, S. J., Adams, P. J., and Fleming, P. A. (2017). Population monitoring of an endemic macropod, the quokka (Setonix brachyurus), in the northern jarrah forest, Western Australia. Australian Mammalogy 40, 26–35.
Population monitoring of an endemic macropod, the quokka (Setonix brachyurus), in the northern jarrah forest, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Fisher, D. O. (2000). Effects of vegetation structure, food and shelter on the home range and habitat use of an endangered wallaby. Journal of Applied Ecology 37, 660–671.
Effects of vegetation structure, food and shelter on the home range and habitat use of an endangered wallaby.Crossref | GoogleScholarGoogle Scholar |

Fisher, D. O., and Owens, I. P. F. (2000). Female home range size and the evolution of social organization in macropod marsupials. Journal of Animal Ecology 69, 1083–1098.
Female home range size and the evolution of social organization in macropod marsupials.Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J. (2009). Geographic range limits: achieving synthesis. Proceedings. Biological Sciences 276, 1395–1406.
Geographic range limits: achieving synthesis.Crossref | GoogleScholarGoogle Scholar | 19324809PubMed |

Goldingay, R. L. (2015). A review of home-range studies on Australian terrestrial vertebrates: adequacy of studies, testing of hypotheses, and relevance to conservation and international studies. Australian Journal of Zoology 63, 136–146.
A review of home-range studies on Australian terrestrial vertebrates: adequacy of studies, testing of hypotheses, and relevance to conservation and international studies.Crossref | GoogleScholarGoogle Scholar |

Guyer, C., Johnson, V. M., and Hermann, S. M. (2012). Effects of population density on patterns of movement and behaviour of gopher tortoises (Gopherus polyphemus). Herpetological Monograph 26, 122–134.
Effects of population density on patterns of movement and behaviour of gopher tortoises (Gopherus polyphemus).Crossref | GoogleScholarGoogle Scholar |

Hayward, M. W., de Tores, P. J., Dillon, M. J., and Fox, B. J. (2003). Local population structure of a naturally occurring metapopulation of the quokka (Setonix brachyurus Macropodidae: Marsupialia). Biological Conservation 110, 343–355.
Local population structure of a naturally occurring metapopulation of the quokka (Setonix brachyurus Macropodidae: Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Hayward, M. W., de Tores, P. J., Augee, M. L., Fox, B. J., and Banks, P. B. (2004). Home range and movements of the quokka Setonix brachyurus (Macropodidae: Marsupialia), and its impact on the viability of the metapopulation on the Australian mainland. Journal of Zoology 263, 219–228.
Home range and movements of the quokka Setonix brachyurus (Macropodidae: Marsupialia), and its impact on the viability of the metapopulation on the Australian mainland.Crossref | GoogleScholarGoogle Scholar |

Hayward, M. W., de Tores, P. J., Dillon, M. J., Fox, B. J., and Banks, P. B. (2005a). Using faecal pellet counts along transects to estimate quokka (Setonix brachyurus) population density. Wildlife Research 32, 503–507.
Using faecal pellet counts along transects to estimate quokka (Setonix brachyurus) population density.Crossref | GoogleScholarGoogle Scholar |

Hayward, M. W., de Tores, P. J., and Banks, P. B. (2005b). Habitat use of the quokka Setonix brachyurus (Macropodidae: Marsupialia) in the northern jarrah forest of Australia. Journal of Mammalogy 86, 683–688.
Habitat use of the quokka Setonix brachyurus (Macropodidae: Marsupialia) in the northern jarrah forest of Australia.Crossref | GoogleScholarGoogle Scholar |

Henandez Santin, L., Fisher, D., and Goldizen, A. (2018). Ecology and predator associations of the northern quoll in the Pilbara 2018. Report of the National Environmental Science Program Threatened Species Recovery Hub.

Holsworth, W. N. (1967). Population dynamics of the quokka, Setonix brachyurus, on the west end of Rottnest I., Western Australia. I. Habitat and distribution of the quokka. Australian Journal of Zoology 15, 29–46.
Population dynamics of the quokka, Setonix brachyurus, on the west end of Rottnest I., Western Australia. I. Habitat and distribution of the quokka.Crossref | GoogleScholarGoogle Scholar |

Horne, J. S., and Garton, E. O. (2009). Animal Space Use 1.3. Available at: http://www.cnr.uidaho.edu/populationecology/animal_space_use

Horsup, A. (1994). Home range of the allied rock-wallaby, Petrogale assimilis. Wildlife Research 21, 65–84.
Home range of the allied rock-wallaby, Petrogale assimilis.Crossref | GoogleScholarGoogle Scholar |

Hynes, E. F., Handasvde, K. A., Shaw, G., and Renfree, M. (2011). The effects of gestagen implants on the behaviour of free-ranging female koalas. Applied Animal Behaviour Science 134, 209–216.
The effects of gestagen implants on the behaviour of free-ranging female koalas.Crossref | GoogleScholarGoogle Scholar |

IBRA (2004). Interim biogeographical regionalisation for Australia. Version 6.1 Sub-regions. Australian Government Department of the Environment and Heritage, Canberra. Available at: http://www.environment.gov.au [accessed 15 October 2014].

IUCN (2018). Red List of Threatened Species. Version 2018-1. Available at: www.iucnredlist.org [accessed 19 September 2018].

Jaquiéry, J., Guélat, J., Broquet, T., Berset-Brändli, L., Pellegrini, E., Moresi, R., Hirzel, A. H., and Perrin, N. (2008). Habitat-quality effects on metapopulation dynamics in greater white-toothed shrews, Crocidura russula. Ecology 89, 2777–2785.
Habitat-quality effects on metapopulation dynamics in greater white-toothed shrews, Crocidura russula.Crossref | GoogleScholarGoogle Scholar | 18959315PubMed |

Johnson, K. A. (1980). Spatial and temporal use of habitat by the red-necked pademelon Thylogale thetis. Australian Wildlife Research 7, 157–166.
Spatial and temporal use of habitat by the red-necked pademelon Thylogale thetis.Crossref | GoogleScholarGoogle Scholar |

Kenward, R.E., Walls, S.S., South, A.B., and Casey, N.M. (2008). ‘Ranges 8: for the Analysis of Tracking and Location Data.’ (Anatrack Ltd: Wareham, UK.)

Kitchener, D. J. (1973). Notes on home range and movement in two small macropods, the potoroo (Potorous apicalis) and the quokka (Setonix brachyurus). Mammalia 37, 231–240.
Notes on home range and movement in two small macropods, the potoroo (Potorous apicalis) and the quokka (Setonix brachyurus).Crossref | GoogleScholarGoogle Scholar |

Laws, R. J., and Goldizen, A. W. (2003). Nocturnal home ranges and social interactions for the brush-tailed rock-wallaby Petrogale penicillata at Hurdle Creek, Queensland. Australian Mammalogy 25, 169–176.
Nocturnal home ranges and social interactions for the brush-tailed rock-wallaby Petrogale penicillata at Hurdle Creek, Queensland.Crossref | GoogleScholarGoogle Scholar |

Lee, J. E., White, G. C., Garrott, R. A., Bartmann, R. M., and Alldredge, A. W. (1985). Accessing accuracy of a radiotelemetry system for estimating animal locations. Journal of Wildlife Management 49, 658–663.
Accessing accuracy of a radiotelemetry system for estimating animal locations.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D. B., McCarthy, M. A., Parris, K. M., and Pope, M. L. (2000). Habitat fragmentation, landscape context, and mammalian assemblages in southeastern Australia. Journal of Mammalogy 81, 787–797.
Habitat fragmentation, landscape context, and mammalian assemblages in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Long, K. (2001). Spatio-temporal interactions among male and female long-nosed potoroos, Potorous tridactylus (Marsupialia: Macropodoidea): mating system implications. Australian Journal of Zoology 49, 17–26.
Spatio-temporal interactions among male and female long-nosed potoroos, Potorous tridactylus (Marsupialia: Macropodoidea): mating system implications.Crossref | GoogleScholarGoogle Scholar |

McLean, I. G., Cameron, E. Z., Linklater, W. L., Schmitt, N. T., and Pulskamp, K. S. M. (2008). Partnerships in the social system of a small macropod marsupial, the quokka (Setonix brachyurus). Behaviour 146, 89–112.

Miller, S., Bencini, R., and Hartmann, P. E. (2009). Composition of the milk of the quokka, Setonix brachyurus. Australian Journal of Zoology 57, 11–21.
Composition of the milk of the quokka, Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar |

Miller, S., Bencini, R., and Hartmann, P. E. (2010). Consumption of milk by quokka (Setonix brachyurus) young. Australian Journal of Zoology 58, 121–126.
Consumption of milk by quokka (Setonix brachyurus) young.Crossref | GoogleScholarGoogle Scholar |

Moilanen, A., and Hanski, I. (1998). Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79, 2503–2515.
Metapopulation dynamics: effects of habitat quality and landscape structure.Crossref | GoogleScholarGoogle Scholar |

Morris, D. W., and MacEachern, J. T. (2010). Active density-dependent habitat selection in a controlled population of small mammals. Ecology 91, 3131–3137.
Active density-dependent habitat selection in a controlled population of small mammals.Crossref | GoogleScholarGoogle Scholar | 21141174PubMed |

Moss, G. L. (1995). Home range, grouping patterns and the mating system of the red kangaroo (Macropus rufus) in the arid zone of New South Wales, Australia. Ph.D. Thesis, University of New South Wales, Sydney.

Norton, M. A., French, K., and Claridge, A. W. (2010). Habitat associations of the long-nosed potoroo (Potorous tridactylus) at multiple spatial scales. Australian Journal of Zoology 58, 303–316.
Habitat associations of the long-nosed potoroo (Potorous tridactylus) at multiple spatial scales.Crossref | GoogleScholarGoogle Scholar |

Noss, R. F., and Cooperrider, A. Y. (1994). ‘Saving Nature’s Legacy: Protecting and Restoring Biodiversity.’ (Island Press: California.)

Phillips  V.F.Chambers  B.K.Bencini  R.2019 Habitats modified for tourism affect the movement patterns of an endemic marsupial, the Rottnest Island quokka (Setonix brachyurus).Australian Mammalogy.10.1071/AM17063

Pope, L. C., Vernes, K., Goldizen, A. W., and Johnson, C. N. (2012). Mating system and local dispersal patterns of an endangered potoroid, the northern bettong (Bettongia tropica). Australian Journal of Zoology 60, 278–287.
Mating system and local dispersal patterns of an endangered potoroid, the northern bettong (Bettongia tropica).Crossref | GoogleScholarGoogle Scholar |

Povh, L. F., Bencini, R., Chambers, B. K., Kreplins, T. L., Willers, N., Adams, P. J., Wann, J., Kobryn, H. T., and Fleming, P. A. (2019). Shedding light on a cryptic macropodid: home ranges and habitat preferences of translocated western brush wallabies (Notamacropus irma). Australian Mammalogy 41, 82–91.
Shedding light on a cryptic macropodid: home ranges and habitat preferences of translocated western brush wallabies (Notamacropus irma).Crossref | GoogleScholarGoogle Scholar |

Powell, R. A. (2000). Animal home-ranges and territories and home-range estimators. In ‘Research Techniques in Animal Ecology’. (Eds L. Boitani and T. K. Fuller.) pp. 65–110. (Columbia University Press: New York.)

QGIS Development Team (2014). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org

Rosenzweig, M. L. (1991). Habitat selection and population interactions – the search for mechanism. American Naturalist 137, S5–S28.
Habitat selection and population interactions – the search for mechanism.Crossref | GoogleScholarGoogle Scholar |

Saunders, D. A., Hobbs, R. J., and Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5, 18–32.
Biological consequences of ecosystem fragmentation: a review.Crossref | GoogleScholarGoogle Scholar |

Schuerings, J., Jentsch, A., Hammerl, V., Lenz, K., Henry, H. A. L., Malyshev, A. V., and Kreyling, J. (2014). Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms. Biogeosciences 11, 7051–7060.
Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms.Crossref | GoogleScholarGoogle Scholar |

Seaman, D. E., and Powell, R. W. (1996). An evaluation of the accuracy of kernel density estimators for home-range analysis. Ecology 77, 2075–2085.
An evaluation of the accuracy of kernel density estimators for home-range analysis.Crossref | GoogleScholarGoogle Scholar |

Sharp, A. (2002). The ecology and conservation biology of the yellow-footed rock-wallaby. Ph.D. Thesis, University of Queensland, Brisbane.

Sharp, A. (2009). Home range dynamics of the yellow-footed rock-wallaby (Petrogale xanthopus celeris) in central-western Queensland. Austral Ecology 34, 55–68.
Home range dynamics of the yellow-footed rock-wallaby (Petrogale xanthopus celeris) in central-western Queensland.Crossref | GoogleScholarGoogle Scholar |

Sinclair, E. A. (1998). Morphological variation among populations of the quokka, Setonix brachyurus (Macropodidae: Marsupialia), in Western Australia. Australian Journal of Zoology 46, 439–449.
Morphological variation among populations of the quokka, Setonix brachyurus (Macropodidae: Marsupialia), in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Stata Corp (2007). ‘Stata Statistical Software: Release 10.’ (Stata Corp LP: College Station, TX.)

Stirrat, S. C. (2002). Foraging ecology of the agile wallaby (Macropus agilis) in the wet–dry tropics. Wildlife Research 29, 347–361.
Foraging ecology of the agile wallaby (Macropus agilis) in the wet–dry tropics.Crossref | GoogleScholarGoogle Scholar |

Stolter, C., Ball, J. P., and Julkunen-Tiitto, R. (2013). Seasonal differences in the relative importance of specific phenolics and twig morphology result in contrasting patterns of foraging by a generalist herbivore. Canadian Journal of Zoology 91, 338–347.
Seasonal differences in the relative importance of specific phenolics and twig morphology result in contrasting patterns of foraging by a generalist herbivore.Crossref | GoogleScholarGoogle Scholar |

Swihart, R. K., and Slade, N. A. (1985). Influence of sampling interval on estimates of home-range size. Wildlife Management 49, 1019–1025.
Influence of sampling interval on estimates of home-range size.Crossref | GoogleScholarGoogle Scholar |

Telfer, W. R., and Griffiths, A. D. (2006). Dry-season use of space, habitats and shelters by the short-eared rock-wallaby (Petrogale brachyotis) in the monsoon tropics. Wildlife Research 33, 207–214.
Dry-season use of space, habitats and shelters by the short-eared rock-wallaby (Petrogale brachyotis) in the monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

van Beest, F. M., Uzal, A., Vander Wal, E., Laforge, M. P., Contasti, A. L., Colville, D., and Mcloughlin, P. D. (2014). Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. Journal of Animal Ecology 83, 147–156.
Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal.Crossref | GoogleScholarGoogle Scholar | 23931034PubMed |

Whyte, B. I., Ross, J. G., and Blackie, H. M. (2013). Differences in brushtail possum home-range characteristics among sites of varying habitat and population density. Wildlife Research 40, 537–544.
Differences in brushtail possum home-range characteristics among sites of varying habitat and population density.Crossref | GoogleScholarGoogle Scholar |

Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home range studies. Ecology 70, 164–168.
Kernel methods for estimating the utilization distribution in home range studies.Crossref | GoogleScholarGoogle Scholar |

Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Prentice Hall: Upper Saddle River, NJ.)