Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Dwarf minke whales from the South Pacific share a matrilineal lineage distinct from Balaenoptera acutorostrata acutorostrata and B. a. scammoni

Omar Ramirez-Flores https://orcid.org/0000-0002-2955-394X A F , Alastair Birtles A B , Diana Pazmino A C D , Kyall R. Zenger A C E and Lynne Van-Herwerden A C E
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4810, Australia.

B College of Business, Law and Governance, James Cook University, Townsville, Qld 4810, Australia.

C Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Qld 4810, Australia.

D Galápagos Science Centre, Universidad San Francisco de Quito, Quito, Ecuador.

E Comparative Genomics Centre, James Cook University, Townsville, Qld 4810, Australia.

F Corresponding author. Email: omar.ramirezflores@my.jcu.edu.au

Australian Mammalogy 41(2) 231-240 https://doi.org/10.1071/AM18015
Submitted: 28 September 2017  Accepted: 7 December 2018   Published: 21 January 2019

Abstract

Dwarf minke whales are regarded as an undescribed subspecies of common minke whales (Balaenoptera acutorostrata), but appropriate conservation action requires taxonomic confirmation. The relationship of the Australian Great Barrier Reef (GBR) dwarf minke whale aggregation to other minke whales is unknown. This study aims to clarify the phylogenetic relationship of GBR dwarf minke whales, using partial mitochondrial DNA sequence data from 23 GBR dwarf minke whales, compared with other available minke whale sequences. GBR dwarf minke whales share haplotypes with other West South Pacific (WSP) dwarf minke whales. Satellite tagging studies corroborate these findings, indicating that GBR dwarf minke whales migrate south along the east Australian coast towards the Southern Ocean. Despite nuclear data not being available, GBR and WSP dwarf minke whales share a distinctive mitochondrial lineage compared with other common minke whales and should be managed independently of North Pacific and Atlantic Ocean common minke whale populations.

Additional keywords: cetaceans, Great Barrier Reef, marine mammals, matrilineal molecular markers, phylogenetics.


References

Arnason, U., and Gullberg, A. (1994). Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367, 726–728.
Relationship of baleen whales established by cytochrome b gene sequence comparison.Crossref | GoogleScholarGoogle Scholar | 8107866PubMed |

Arnason, U., Gullberg, A., and Janke, A. (2004). Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene 333, 27–34.
Mitogenomic analyses provide new insights into cetacean origin and evolution.Crossref | GoogleScholarGoogle Scholar | 15177677PubMed |

Arnold, P. W. (1997). Occurrence of dwarf minke whales (Balaenoptera acutorostrata) on the northern Great Barrier Reef, Australia. Report of the International Whaling Commission 47, 419–424.

Arnold, P. W., Birtles, R. A., Dunstan, A., Lukoschek, V., and Matthews, M. (2005). Colour patterns of the dwarf minke whale Balaenoptera acutorostrata sensu lato: description, cladistic analysis and taxonomic implications. Memoirs of the Queensland Museum 51, 277–307.

Bernardi, G., Holbrook, S. J., Schmitt, R. J., Crane, N. L., and DeMartini, E. (2002). Species boundaries, populations and colour morphs in the coral reef three-spot damselfish (Dascyllus trimaculatus) species complex. Proceedings of the Royal Society of London. Series B: Biological Sciences 269, 599–605.
Species boundaries, populations and colour morphs in the coral reef three-spot damselfish (Dascyllus trimaculatus) species complex.Crossref | GoogleScholarGoogle Scholar | 11916476PubMed |

Bérubé, M., Aguilar, A., Dendanto, D., Larsen, F., Notarbartolo di Sciara, G., Sears, R., Sigurjónsson, J., Urban-R, J., and Palsboll, P. (1998). Population genetic structure of North Atlantic, Mediterranean Sea and Sea of Cortez fin whales, Balaenoptera physalus (Linnaeus 1758): analysis of mitochondrial and nuclear loci. Molecular Ecology 7, 585–599.
Population genetic structure of North Atlantic, Mediterranean Sea and Sea of Cortez fin whales, Balaenoptera physalus (Linnaeus 1758): analysis of mitochondrial and nuclear loci.Crossref | GoogleScholarGoogle Scholar | 9633102PubMed |

Birtles, A., Arnold, P., and Dunstan, A. J. (2002). Commercial swim programs with dwarf minke whales on the northern Great Barrier Reef, Australia: some characteristics of the encounters with management implications. Australian Mammalogy 24, 23–38.
Commercial swim programs with dwarf minke whales on the northern Great Barrier Reef, Australia: some characteristics of the encounters with management implications.Crossref | GoogleScholarGoogle Scholar |

Birtles, A., Arnold, P., Curnock, M., Salmon, S., Mangott, A., Sobtzick, S., Valentine, P., Caillaud, A., and Rumney, J. (2008). Code of Practice for dwarf minke whale interactions in the Great Barrier Reef World Heritage Area. Great Barrier Reef Marine Park Authority, Townsville.

Birtles, A., Valentine, P., Curnock, M., Mangott, A., Sobtzick, S., and Marsh, H. (2014). Report to the Great Barrier Reef Marine Park Authority on the dwarf minke whale tourism monitoring program (2003–2008). Research Publication 112, Great Barrier Reef Marine Park Authority, Townsville.

Birtles, A., Andrews, D. R., and Jenner, C. (2015). Spatial ecology, migratory paths and critical areas of habitat use of Australia’s dwarf minke whales. Preliminary Report on 2013/36, Australian Marine Mammal Centre, Townsville.

Cammen, K. M., Andrews, K. R., Carroll, E. L., Foote, A. D., Humble, E., Khudyakov, J. I., Louis, M., McGowen, M. R., Olsen, M. T., and Van Cise, A. M. (2016). Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals. The Journal of Heredity 107, 481–495.
Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals.Crossref | GoogleScholarGoogle Scholar | 27511190PubMed |

Casacci, L., Barbero, F., and Balletto, E. (2014). The “Evolutionarily Significant Unit” concept and its applicability in biological conservation. The Italian Journal of Zoology 81, 182–193.
The “Evolutionarily Significant Unit” concept and its applicability in biological conservation.Crossref | GoogleScholarGoogle Scholar |

Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., and Du, J. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences of the United States of America 99, 5261–5266.
Comprehensive human genome amplification using multiple displacement amplification.Crossref | GoogleScholarGoogle Scholar | 11959976PubMed |

Delsuc, F., Brinkmann, H., and Philippe, H. (2005). Phylogenomics and the reconstruction of the tree of life. Nature Reviews. Genetics 6, 361–375.
Phylogenomics and the reconstruction of the tree of life.Crossref | GoogleScholarGoogle Scholar | 15861208PubMed |

Hayano, A., Amano, M., and Miyazaki, N. (2003). Phylogeography and population structure of the Dall’s porpoise, Phocoenoides dalli, in Japanese waters revealed by mitochondrial DNA. Genes & Genetic Systems 78, 81–91.
Phylogeography and population structure of the Dall’s porpoise, Phocoenoides dalli, in Japanese waters revealed by mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Horton, T. W., Holdaway, R. N., Zerbini, A. N., Hauser, N., Garrigue, C., Andriolo, A., and Clapham, P. J. (2011). Straight as an arrow: humpback whales swim constant course tracks during long-distance migration. Biology Letters 7, 674–679.
Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.Crossref | GoogleScholarGoogle Scholar | 21508023PubMed |

Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.
Bayesian inference of phylogeny and its impact on evolutionary biology.Crossref | GoogleScholarGoogle Scholar | 11743192PubMed |

International Whaling Commission (IWC) (2001). Report of the International Whaling Commission Scientific Committee working group on nomenclature. The Journal of Cetacean Research and Management 3, 363–365.

Jefferson, T. A., Webber, M. A., and Pitman, R. L. (2011). ‘Marine Mammals of the World: a Comprehensive Guide to their Identification.’ (Elsevier Science & Technology: Canada.)

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., and Duran, C. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Lemey, P. (2009). ‘The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing.’ (Cambridge University Press: New York.)

Malde, K., Seliussen, B. B., Quintela, M., Dahle, G., Besnier, F., Skaug, H. J., Øien, N., Solvang, J. H., Haug, T., Skern-Mauritzen, R., Kanda, N., Pastene, L. A., Jonassen, I., and Glover, K. A. (2017). Whole genome resequencing reveals diagnostic markers for investigating global migration and hybridization between minke whale species. BMC Genomics 18, 76.
Whole genome resequencing reveals diagnostic markers for investigating global migration and hybridization between minke whale species.Crossref | GoogleScholarGoogle Scholar | 28086785PubMed |

Messmer, V., Van Herwerden, L., Munday, P. L., and Jones, G. P. (2005). Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs 24, 392–402.
Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

National Oceanic and Atmospheric Administration (NOAA) (2018). Species directory: minke whale. Available at: https://www.fisheries.noaa.gov/species/minke-whale#overview [accessed 20 August 2018].

Palumbi, S. R., and Baker, C. S. (1994). Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution 11, 426–435.
| 7912407PubMed |

Pastene, L. A., Goto, M., Kanda, N., Zerbini, A. N., Kerem, D., Watanabe, K., Bessho, Y., Hasegawa, M., Nielsen, R., and Larsen, F. (2007). Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata. Molecular Ecology 16, 1481–1495.
Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata.Crossref | GoogleScholarGoogle Scholar | 17391271PubMed |

Pastene, L. A., Acevedo, J., Goto, M., Zerbini, A. N., Acuña, P., and Aguayo-Lobo, A. (2010). Population structure and possible migratory links of common minke whales, Balaenoptera acutorostrata, in the Southern Hemisphere. Conservation Genetics 11, 1553–1558.
Population structure and possible migratory links of common minke whales, Balaenoptera acutorostrata, in the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

Quintela, M., Skaug, H. J., Øien, N., Haug, T., Seliussen, B. B., Solvang, H. K., Pampoulie, C., Kanda, N., Pastene, L. A., and Glover, K. A. (2014). Investigating population genetic structure in a highly mobile marine organism: the minke whale Balaenoptera acutorostrata acutorostrata in the North East Atlantic. PLoS One 9, e108640.
Investigating population genetic structure in a highly mobile marine organism: the minke whale Balaenoptera acutorostrata acutorostrata in the North East Atlantic.Crossref | GoogleScholarGoogle Scholar | 25268591PubMed |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. (2014). Tracer. Version 1.6. Available at: http://beast.bio.ed.ac.uk/Tracer [accessed 24 October 2018].

Ramon, M. L., Lobel, P. S., and Sorenson, M. D. (2003). Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization? Molecular Ecology 12, 2975–2980.
Lack of mitochondrial genetic structure in hamlets (Hypoplectrus spp.): recent speciation or ongoing hybridization?Crossref | GoogleScholarGoogle Scholar | 14629378PubMed |

Reilly, S., Bannister, J., Best, P. B., Brown, M., Brownell, R., Jr, Butterworth, D., Clapham, P. J., Cooke, J., Donovan, G. P., Urban, J., and Zerbini, A. N. (2008). Balaenoptera acutorostrata. The IUCN Red List of Threatened Species. Version 2008-2. Available at: http://www.iucnredlist.org/details/2474/0 [accessed 11 May 2018].

Rice, D. W. (1998). ‘Marine Mammals of the World: Systematics and Distribution.’ Special Publication No. 4. (The Society of Marine Mammalogy: Lawrence, KS.)

Rychel, A. L., Reeder, T. W., and Berta, A. (2004). Phylogeny of mysticete whales based on mitochondrial and nuclear data. Molecular Phylogenetics and Evolution 32, 892–901.
Phylogeny of mysticete whales based on mitochondrial and nuclear data.Crossref | GoogleScholarGoogle Scholar | 15288064PubMed |

Sasaki, T., Nikaido, M., Hamilton, H., Goto, M., Kato, H., Kanda, N., Pastene, L. A., Cao, Y., Fordyce, R. E., Hasegawa, M., and Okada, N. (2005). Mitochondrial phylogenetics and evolution of mysticete whales. Systematic Biology 54, 77–90.
Mitochondrial phylogenetics and evolution of mysticete whales.Crossref | GoogleScholarGoogle Scholar | 15805012PubMed |

Sobtzick, S. (2010). Dwarf minke whales in the northern Great Barrier Reef and implications for the sustainable management of the swim-with-whale industry. Ph.D. Thesis, James Cook University, Townsville.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Valentine, P. S., Birtles, A., Curnock, M., Arnold, P., and Dustan, A. (2004). Getting closer to whales – passenger expectations and experiences, and the management of swim with dwarf minke whale interactions in the Great Barrier Reef. Tourism Management 25, 647–655.
Getting closer to whales – passenger expectations and experiences, and the management of swim with dwarf minke whale interactions in the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Wada, S., Kobayashi, T., and Numachi, K. (1991). Genetic variability and differentiation of mitochondrial DNA in minke whale. Report of the International Whaling Commission 13, 203–214.