Spot the difference: optimising camera trap use to detect and identify individuals of a medium-sized carnivorous marsupial
Melissa C. Taylor A * , Adrian F. Wayne B , Nicola J. Armstrong C , Michael C. Calver A and Kate A. Bryant A DA
B
C
D
Handling Editor: Ross Goldingay
Abstract
Camera trap model and setup choice can significantly affect data collection. This study investigated standard-angle Reconyx and wide-angle Swift camera traps in different setups and how the choice of equipment influenced detection and individual identification of the chuditch (Dasyurus geoffroii). Camera models were placed side-by-side in four setups: (i) single and (ii) paired camera traps 30 cm above ground; and single cameras (iii) 1 m and (iv) 2 m above ground, with a lure (tuna oil) in the centre of all setups. Swifts had a higher Detection probability than Reconyx, although the number of detections with identified individuals did not significantly differ between camera models. The 30 cm paired camera setups had the highest Detection and Identification probabilities for both camera models, with both probabilities decreasing as cameras were positioned higher. Camera model and setup choice are important in obtaining detection and identification data, and should be considered when planning studies and interpreting results.
Keywords: camera trap, carnivorous marsupial, chuditch, cryptic species, detection efficiency, individual identification, Julimar State Forest, remote sensor camera, survey design, western quoll (Dasyurus geoffroii).
References
Augustine, B. C., Royle, J. A., Kelly, M. J., Satter, C. B., Alonso, R. S., Boydston, E. E., and Crooks, K. R. (2018). Spatial capture-recapture with partial identity: An application to camera traps. The Annals of Applied Statistics 12, 67-95.
| Crossref | Google Scholar |
Austin, C., Tuft, K., Ramp, D., Cremona, T., and Webb, J. K. (2017). Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus). Australian Mammalogy 39, 72-77.
| Crossref | Google Scholar |
Balme, G. A., Hunter, L. T. B., and Slotow, R. (2009). Evaluating Methods for Counting Cryptic Carnivores. The Journal of Wildlife Management 73, 433-441.
| Crossref | Google Scholar |
Broadley, K., Burton, A. C., Avgar, T., and Boutin, S. (2019). Density-dependent space use affects interpretation of camera trap detection rates. Ecology and Evolution 9, 14031-14041.
| Crossref | Google Scholar | PubMed |
Burrows, N. D., and Christensen, P. E. S. (2002). Long-term trends in native mammal capture rates in a jarrah forest in south-western Australia. Australian Forestry 65, 211-219.
| Crossref | Google Scholar |
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., and Boutin, S. (2015). REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52, 675-685.
| Crossref | Google Scholar |
den Hartog, J., and Reijns, R. (2020). I3S: Interactive Individual Identification System. Available at https://reijns.com/i3s/i3s-spot/
Department of the Environment (2023). ‘Dasyurus geoffroii In ‘Species Profile and Threats Database.’ (Department of the Environment: Canberra, ACT.) Available at https://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=330
Efford, M. (2004). Density estimation in live-trapping studies. Oikos 106, 598-610.
| Crossref | Google Scholar |
Fancourt, B. A., Sweaney, M., and Fletcher, D. B. (2018). More haste, less speed: pilot study suggests camera trap detection zone could be more important than trigger speed to maximise species detections. Australian Mammalogy 40, 118-121.
| Crossref | Google Scholar |
Ferreras, P., Díaz-Ruiz, F., and Monterroso, P. (2018). Improving mesocarnivore detectability with lures in camera-trapping studies. Wildlife Research 45, 505-517.
| Crossref | Google Scholar |
Foster, R. J., and Harmsen, B. J. (2012). A critique of density estimation from camera-trap data. The Journal of Wildlife Management 76, 224-236.
| Crossref | Google Scholar |
Gervasi, V., Brøseth, H., Gimenez, O., Nilsen, E. B., Odden, J., Flagstad, Ø., and Linnell, J. D. C. (2016). Sharing data improves monitoring of trans-boundary populations: the case of wolverines in central Scandinavia. Wildlife Biology 22, 95-106.
| Crossref | Google Scholar |
Glover-Kapfer, P., Soto-Navarro, C. A., and Wearn, O. R. (2019). Camera-trapping version 3.0: current constraints and future priorities for development. Remote Sensing in Ecology and Conservation 5, 209-223.
| Crossref | Google Scholar |
Greenberg, S. (2021). Timelapse: An Image Analyser for Camera Traps. Available at https://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php?n=Main.HomePage
Harju, S. M., Cambrin, S. M., Averill-Murray, R. C., Nafus, M., Field, K. J., and Allison, L. J. (2020). Using incidental mark-encounter data to improve survival estimation. Ecology and Evolution 10, 360-370.
| Crossref | Google Scholar | PubMed |
Henderson, T., Fancourt, B. A., and Ballard, G. (2022). The importance of species-specific survey designs: prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Australian Mammalogy 44, 380-386.
| Crossref | Google Scholar |
Hofmeester, T. R., Rowcliffe, J. M., and Jansen, P. A. (2017). A simple method for estimating the effective detection distance of camera traps. Remote Sensing in Ecology and Conservation 3, 81-89.
| Crossref | Google Scholar |
Hohnen, R., Ashby, J., Tuft, K., and McGregor, H. (2013). Individual identification of northern quolls (Dasyurus hallucatus) using remote cameras. Australian Mammalogy 35, 131-135.
| Crossref | Google Scholar |
Johnson, B., Reaveley, A., and Morris, K. D. (2006). Julimar turning full circle. Landscope 21(4), 56-61.
| Google Scholar |
Karanth, K. U., and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852-2862.
| Crossref | Google Scholar |
Kays, R., Arbogast, B. S., Baker‐Whatton, M., Beirne, C., Boone, H. M., Bowler, M., Burneo, S. F., Cove, M. V., Ding, P., Espinosa, S., Gonçalves, A. L. S., Hansen, C. P., Jansen, P. A., Kolowski, J. M., Knowles, T. W., Lima, M. G. M., Millspaugh, J., McShea, W. J., Pacifici, K., Parsons, A. W., Pease, B. S., Rovero, F., Santos, F., Schuttler, S. G., Sheil, D., Si, X., Snider, M., and Spironello, W. R. (2020). An empirical evaluation of camera trap study design: How many, how long and when? Methods in Ecology and Evolution 11, 700-713.
| Crossref | Google Scholar |
Larrucea, E. S., Brussard, P. F., Jaeger, M. M., and BARRETT, R. H. (2007). Cameras, coyotes, and the assumption of equal detectability. The Journal of Wildlife Management 71, 1682-1689.
| Crossref | Google Scholar |
McGregor, R. A., Stokes, V. L., and Craig, M. D. (2014). Does forest restoration in fragmented landscapes provide habitat for a wide-ranging carnivore? Animal Conservation 17, 467-475.
| Crossref | Google Scholar |
Meek, P. D., Ballard, G. A., and Fleming, P. J. S. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy 37, 13-22.
| Crossref | Google Scholar |
Mills, D., Fattebert, J., Hunter, L., and Slotow, R. (2019). Maximising camera trap data: Using attractants to improve detection of elusive species in multi-species surveys. PLoS One 14, e0216447.
| Crossref | Google Scholar | PubMed |
Moore, H. A., Valentine, L. E., Dunlop, J. A., and Nimmo, D. G. (2020). The effect of camera orientation on the detectability of wildlife: a case study from north-western Australia. Remote Sensing in Ecology and Conservation 6, 546-556.
| Crossref | Google Scholar |
Morris, K. D., Johnson, B., Rooney, J., and Colin, W. (2000). The short-term impacts of timber harvesting and associated activities on the abundance of medium-sized mammals in the Jarrah forest of Western Australia. In ‘Nature Conservation 5: Nature Conservation in Production Environments: Mannaging the Matrix’. (Eds. J. L. Craig, N. Mitchell, D. A. Saunders.) pp. 60–67. (Surry Beatty & Sons: Sydney.)
Morris, K. D., Johnson, B., Orell, P., Gaikhorst, G., Wayne, A., and Moro, D. (2003). Recovery of the threatened chuditch (Dasyurus geoffroii): a case study. In ‘Predators with Pouches: The Biology of Carnivorous Marsupials’. (Eds M. Jones, C. R. Dickman, M. Archer.) pp. 435–451. (CSIRO Publishing: Melbourne.)
Moseby, K., Hodgens, P., Bannister, H., Mooney, P., Brandle, R., Lynch, C., Young, C., Jansen, J., and Jensen, M. (2021). The ecological costs and benefits of a feral cat poison-baiting programme for protection of reintroduced populations of the western quoll and brushtail possum. Austral Ecology 46, 1366-1382.
| Crossref | Google Scholar |
Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discuss 11, 439-472.
| Crossref | Google Scholar |
Rovero, F., Zimmermann, F., Berzi, D., and Meek, P. (2013). “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix, the Italian Journal of Mammalogy 24, 148-156.
| Crossref | Google Scholar |
Seidlitz, A., Bryant, K. A., Armstrong, N. J., Calver, M., and Wayne, A. F. (2020). Optimising camera trap height and model increases detection and individual identification rates for a small mammal, the numbat (Myrmecobius fasciatus). Australian Mammalogy 43, 226-234.
| Crossref | Google Scholar |
Seidlitz, A., Bryant, K. A., Armstrong, N. J., and Wayne, A. F. (2022). Animal detections increase by using a wide-angle camera trap model but not by periodically repositioning camera traps within study sites. Pacific Conservation Biology 28, 25-35.
| Crossref | Google Scholar |
Serena, M., and Soderquist, T. R. (1989). Spatial organization of a riparian population of the carnivorous marsupial Dasyurus geoffroii. Journal of Zoology 219, 373-383.
| Crossref | Google Scholar |
Silver, S. C., Ostro, L. E. T., Marsh, L. K., Maffei, L., Noss, A. J., Kelly, M. J., Wallace, R. B., Gómez, H., and Ayala, G. (2004). The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148-154.
| Crossref | Google Scholar |
Taylor, B. D., Goldingay, R. L., and Lindsay, J. M. (2014). Horizontal or vertical? Camera trap orientations and recording modes for detecting potoroos, bandicoots and pademelons. Australian Mammalogy 36, 60-66.
| Crossref | Google Scholar |
Wayne, A. F., Rooney, J., Morris, K. D., and Johnson, B. (2008). Improved bait and trapping techniques for chuditch (Dasyurus geoffroii): overcoming reduced trap availability due to increased densities of other native fauna. Conservation Science Western Australia 7, 49-56.
| Google Scholar |
Welbourne, D. J., Claridge, A. W., Paull, D. J., and Lambert, A. (2016). How do passive infrared triggered camera traps operate and why does it matter? Breaking down common misconceptions. Remote Sensing in Ecology and Conservation 2, 77-83.
| Crossref | Google Scholar |
Woinarski, J., Burbidge, A. A. (2019). Dasyurus geoffroii. The IUCN Red List of Threatened Species 2019: e.T6294A21947461. https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T6294A21947461.en [Accessed on 15 February 2024]