Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE (Open Access)

Reassessment of the subspecific status of the Australian Wet Tropics yellow-bellied glider, Petaurus australis

Steven J. B. Cooper A B * , Kenny J. Travouillon C , Kristofer M. Helgen B D , Kathleen Saint A , Rupert Russell E and John Winter F
+ Author Affiliations
- Author Affiliations

A South Australian Museum, North Terrace, Adelaide, SA 5000 Australia.

B Environment Institute, School of Biological Sciences, The University of Adelaide, SA 5005 Australia.

C Western Australian Museum, Collections and Research, 49 Kew Street, Welshpool, WA 6106, Australia.

D Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.

E PO Box 63, Mt Molloy, Qld 4871, Australia.

F PO Box 1485, Atherton, Qld 4883, Australia.

* Correspondence to: steve.cooper@samuseum.sa.gov.au

Handling Editor: Mark Eldridge

Australian Mammalogy 45(2) 220-236 https://doi.org/10.1071/AM22022
Submitted: 30 June 2022  Accepted: 15 November 2022   Published: 11 January 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The Wet Tropics (WT) population of the yellow-bellied glider Petaurus australis Shaw, 1791 in North Queensland is listed as Endangered at the state and national level, but its taxonomic classification is currently uncertain. Here we expand on previous genetic and morphological analyses of the WT population with additional samples and genetic loci to re-assess its subspecific status. Phylogenetic analyses of the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene showed that the WT population formed a reciprocally monophyletic group relative to a group comprising P. australis from its remaining distribution in Australia. The genetic distinction of the WT population was further corroborated by analyses of the nuclear gene von Willebrand factor. Molecular clock analyses of combined ND2ND4 data suggested that the WT population has been isolated from neighbouring populations in southern Queensland over multiple ice age cycles. Morphological analyses show that the WT gliders are smaller, with proportionally shortened faces, and have paler bellies compared to southern yellow-bellied gliders. We, therefore, propose that the WT population be recognised as a distinct subspecies which we herein describe. This taxonomic reassessment of P. australis has important implications for the ongoing conservation management of the WT population and yellow-bellied gliders throughout Australia.

Keywords: aspidonym, Endangered species, Evolutionarily Significant Unit, marsupial, phylogenetics, subspecies, systematics, taxonomy.


References

Amrine-Madsen, H., Scally, M., Westerman, M., Stanhope, M. J., Krajewski, C., and Springer, M. S. (2003). Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Molecular Phylogenetics and Evolution 28, 186–196.
Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials.Crossref | GoogleScholarGoogle Scholar |

Aplin, K. P., Rhind, S. G., Ten Have, J., and Chesser, R. T. (2015). Taxonomic revision of Phascogale tapoatafa (Meyer, 1793) (Dasyuridae; Marsupialia), including descriptions of two new subspecies and confirmation of P. pirata Thomas, 1904 as a ‘Top End’ endemic. Zootaxa 4055, 1–73.
Taxonomic revision of Phascogale tapoatafa (Meyer, 1793) (Dasyuridae; Marsupialia), including descriptions of two new subspecies and confirmation of P. pirata Thomas, 1904 as a ‘Top End’ endemic.Crossref | GoogleScholarGoogle Scholar |

Archer, M. (1984). The Australian marsupial radiation. In ‘Vertebrate Zoogeography and Evolution in Australasia’. (Eds M. Archer, G. Clayton.) pp. 633–708. (Hesperian Press: Carlisle, Western Australia.)

Arevalo, E., Davis, S. K., and Sites, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology 43, 387–418.
Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico.Crossref | GoogleScholarGoogle Scholar |

Avise, J. C., and Ball, R. M. J. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Survey of Evolutionary Biology 7, 45–67.

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: A software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Brown, M., Cooksley, H., Carthew, S. M., and Cooper, S. J. B. (2006). Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology 54, 305–317.
Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis).Crossref | GoogleScholarGoogle Scholar |

Brown, M., Carthew, S. M., and Cooper, S. J. B. (2007). Monogamy in an Australian arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology 55, 185–195.
Monogamy in an Australian arboreal marsupial, the yellow-bellied glider (Petaurus australis).Crossref | GoogleScholarGoogle Scholar |

Carthew, S. M., Goldingay, R. L., and Funnell, D. L. (1999). Feeding behaviour of the yellow-bellied glider (Petaurus Australis) at the Western Edge of Its Range. Wildlife Research 26, 199–208.
Feeding behaviour of the yellow-bellied glider (Petaurus Australis) at the Western Edge of Its Range.Crossref | GoogleScholarGoogle Scholar |

Clayton, M., Wombey, J. C., Mason, I. J., Chesser, R. T., and Wells, A. (2006). ‘CSIRO list of Australian vertebrates: A reference with conservation status’, 2nd edn. (CSIRO Publishing: Melbourne.)

Cook, L. G., Edwards, R. D., Crisp, M. D., and Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics 24, 322–326.
Need morphology always be required for new species descriptions?Crossref | GoogleScholarGoogle Scholar |

Craig, S. A. (1985). Social organization, reproduction and feeding behaviour of a population of yellow-bellied gliders, Petaurus australis (Marsupialia: Petauridae). Wildlife Research 12, 1–18.
Social organization, reproduction and feeding behaviour of a population of yellow-bellied gliders, Petaurus australis (Marsupialia: Petauridae).Crossref | GoogleScholarGoogle Scholar |

Cremona, T., Baker, A. M., Cooper, S. J. B., Montague-Drake, R., Stobo-Wilson, A. M., and Carthew, S. M. (2021). Integrative taxonomic investigation of Petaurus breviceps (Marsupialia: Petauridae) reveals three distinct species. Zoological Journal of the Linnean Society 191, 503–527.
Integrative taxonomic investigation of Petaurus breviceps (Marsupialia: Petauridae) reveals three distinct species.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |

Eyre, T. J., and Goldingay, R. L. (2003). Use of sap trees by the yellow-bellied glider near Maryborough in south-east Queensland. Wildlife Research 30, 229–236.
Use of sap trees by the yellow-bellied glider near Maryborough in south-east Queensland.Crossref | GoogleScholarGoogle Scholar |

Eyre, T. J., and Goldingay, R. L. (2005). Characteristics of sap trees used by yellow-bellied gliders in southern Queensland. Wildlife Research 32, 23–35.
Characteristics of sap trees used by yellow-bellied gliders in southern Queensland.Crossref | GoogleScholarGoogle Scholar |

Finlayson, H. H. (1934). On mammals from the Dawson and Fitzroy valleys: central coastal Queensland. Part II. Transactions and Proceedings of the Royal Society of South Australia 58, 218–231.

Flannery, T. F. (1994). ‘Possums of the world: A monograph of the Phalangeroidea.’ (Geo 635 Productions: Sydney.)

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). ‘Introduction to conservation genetics.’ (Cambridge University Press: Cambridge, UK.)

Goldingay, R. L. (1992). Socioecology of the yellow-bellied glider (Petaurus australis) in a coastal forest. Australian Journal of Zoology 40, 267–278.
Socioecology of the yellow-bellied glider (Petaurus australis) in a coastal forest.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L. (2008). Yellow-bellied glider Petaurus australis Shaw, 1791. In ‘The mammals of Australia’, 3rd edn. (Eds S. Van Dyck, R. Strahan.) pp. 228–230. (Reed New Holland: Sydney.)

Goldingay, R. L., and Kavanagh, R. P. (1990). Socioecology of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Australian Journal of Zoology 38, 327–341.
Socioecology of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., and Kavanagh, R. P. (1993). Home-range estimates and habitat of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Wildlife Research 20, 387–403.
Home-range estimates and habitat of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., Quin, D. G., and Churchill, S. (2001). Spatial variability in the social organisation of the yellow-bellied glider (Petaurus australis) near Ravenshoe, north Queensland. Australian Journal of Zoology 49, 397–409.
Spatial variability in the social organisation of the yellow-bellied glider (Petaurus australis) near Ravenshoe, north Queensland.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., Harrisson, K. A., Taylor, A. C., Ball, T. M., Sharpe, D. J., and Taylor, B. D. (2013). Fine-scale genetic response to landscape change in a gliding mammal. PLoS One 8, e80383.
Fine-scale genetic response to landscape change in a gliding mammal.Crossref | GoogleScholarGoogle Scholar |

Groves, C. (2005). Order Diprotodontia: Petauridae. In ‘Mammal species of the world: A taxonomic and geographic reference’. (Eds D. E. Wilson, D. M. Reeder.) pp. 54–55. (Johns Hopkins University Press: Baltimore.)

Halt, M. N., Kupriyanova, E. K., Cooper, S. J. B., and Rouse, G. W. (2009). Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida : Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics 23, 205–222.
Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida : Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology.Crossref | GoogleScholarGoogle Scholar |

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Harvey, M. S., Main, B. Y., Rix, M. G., and Cooper, S. J. B. (2015). Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia. Invertebrate Systematics 29, 511–553.
Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Henry, S. H. (1985). The diet and socioecology of gliding possums in southern Victoria. PhD thesis, Monash University, Melbourne.

Henry, S. R., and Craig, S. A. (1984). Diet, ranging behaviour and social organization of the yellow-bellied glider (Petaurus australis Shaw) in Victoria. In ‘Possums and Gliders’. (Eds A. P. Smith, I. D. Hume.) pp. 331–341. (Australian Mammal Society: Sydney.)

Jackson, S., and Groves, C. (2015). ‘Taxonomy of Australian mammals.’ (CSIRO Publishing: Melbourne.)

Jackson, S. M., Baker, A. M., Eldridge, M. D. B., Fisher, D. O., Frankham, G. J., Lavery, T. H., MacDonald, A. J., Menkhorst, P. W., Phillips, M. J., Potter, S., Rowe, K. C., Travouillon, K. J., and Umbrello, L. S. (2022). The importance of appropriate taxonomy in Australian mammalogy. Australian Mammalogy , .
The importance of appropriate taxonomy in Australian mammalogy.Crossref | GoogleScholarGoogle Scholar |

Kaiser, H., Crother, B. I., Kelly, C. M. R., Luiselli, L., O’Shea, M., Ota, H., Passos, P., Schleip, W. D., and Wüster, W. (2013). Best practices: In the 21st century, taxonomic decisions in herpetology are acceptable only when supported by a body of evidence and published via peer-review. Herpetological Review 44, 8–23.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lidicker, W. Z. (1962). The nature of subspecies boundaries in a desert rodent and its implications for subspecies taxonomy. Systematic Zoology 11, 160–171.
The nature of subspecies boundaries in a desert rodent and its implications for subspecies taxonomy.Crossref | GoogleScholarGoogle Scholar |

Mackowski, C. M. (1988). Characteristics of eucalypts incised for sap by the yellow-bellied glider, Petaurus australis Shaw (Marsupialia: Petauridae), in Northeastern New South Wales. Australian Mammalogy 11, 5–13.
Characteristics of eucalypts incised for sap by the yellow-bellied glider, Petaurus australis Shaw (Marsupialia: Petauridae), in Northeastern New South Wales.Crossref | GoogleScholarGoogle Scholar |

Malekian, M., Cooper, S. J. B., and Carthew, S. M. (2010a). Phylogeography of the Australian sugar glider (Petaurus breviceps): evidence for a new divergent lineage in eastern Australia. Australian Journal of Zoology 58, 165–181.
Phylogeography of the Australian sugar glider (Petaurus breviceps): evidence for a new divergent lineage in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Malekian, M., Cooper, S. J. B., Norman, J. A., Christidis, L., and Carthew, S. M. (2010b). Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea. Molecular Phylogenetics and Evolution 54, 122–135.
Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and New Guinea.Crossref | GoogleScholarGoogle Scholar |

Malekian, M., Cooper, S. J. B., Saint, K. M., Lancaster, M. L., Taylor, A. C., and Carthew, S. M. (2015). Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps. Ecology and Evolution 5, 3939–3953.
Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps.Crossref | GoogleScholarGoogle Scholar |

Mather, P. (1986). ‘A time for a museum: The history of the Queensland Museum 1862-1986.’ (Queensland Museum: Brisbane.)

Maxwell, S., Burbidge, A. A., and Morris, K. (1996). ‘The 1996 Action Plan for Australian Marsupials and Monotremes. Endangered Species Program, Project No. 500.’ (ANCA: Canberra.)

McKay, G. M. (1988). Family Petauridae. In ‘Zoological Catalogue of Australia, 5, Mammalia’. (Ed. D. W. Walton.) pp. 87–97. (Australian Government Publishing Service: Canberra.)

Messer, P. W., Ellner, S. P., and Hairston, N. G. (2016). Can population genetics adapt to rapid evolution? Trends in Genetics 32, 408–418.
Can population genetics adapt to rapid evolution?Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 2010, New Orleans, Louisiana’. pp. 1–8. (Institute of Electrical and Electronics Engineers (IEEE): Louisiana.)

Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution 9, 373–375.
Defining ‘evolutionarily significant units’ for conservation.Crossref | GoogleScholarGoogle Scholar |

O’Brien, S. J., and Mayr, E. (1991). Bureaucratic mischief: recognizing endangered species and subspecies. Science 251, 1187–1188.
Bureaucratic mischief: recognizing endangered species and subspecies.Crossref | GoogleScholarGoogle Scholar |

Osborne, M. J., and Christidis, L. (2001). Molecular phylogenetics of Australo-Papuan possums and gliders (Family Petauridae). Molecular Phylogenetics and Evolution 20, 211–224.
Molecular phylogenetics of Australo-Papuan possums and gliders (Family Petauridae).Crossref | GoogleScholarGoogle Scholar |

Owen, J. G. (1989). Population and geographic variation of Peromyscus leucopus in relation to climatic factors. Journal of Mammalogy 70, 98–109.
Population and geographic variation of Peromyscus leucopus in relation to climatic factors.Crossref | GoogleScholarGoogle Scholar |

Pavlova, A., Walker, F. M., van der Ree, R., Cesarinia, S., and Taylor, A. C. (2010). Threatened populations of the Australian squirrel glider (Petaurus norfolcensis) show evidence of evolutionary distinctiveness on a Late Pleistocene timescale. Conservation Genetics 11, 2393–2407.
Threatened populations of the Australian squirrel glider (Petaurus norfolcensis) show evidence of evolutionary distinctiveness on a Late Pleistocene timescale.Crossref | GoogleScholarGoogle Scholar |

Quin, D. G., Smith, A. P., and Norton, T. W. (1996). Eco-geographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae). Australian Journal of Zoology 44, 19–45.
Eco-geographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae).Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M., and Drummond, A. J. (2013). Tracer v1.6. Available at http://tree.bio.ed.ac.uk/software/tracer/

Rodríguez, F., Oliver, J. L., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
The general stochastic model of nucleotide substitution.Crossref | GoogleScholarGoogle Scholar |

Russell, R. (1983). Yellow-bellied glider Petaurus australis. In ‘The Australian Museum Complete Book of Australian Mammals’. (Ed. R. Strahn.) p. 136. (Angus and Robertson Publishers: Sydney.)

Russell, R. (1984). Social behaviour of the yellow-bellied glider, Petaurus australis reginae in north Queensland. In ‘Possums and Gliders’. (Eds A. P. Smith, I. D. Hume.) pp. 343–353. (Australian Mammal Society: Sydney.)

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML Web servers.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Crossref | GoogleScholarGoogle Scholar |

Tate, G. H. H. (1952). Mammals of Cape York Peninsula, with notes on the occurrence of rain forest in Queensland. Bulletin of the American Museum of Natural History 98, 563–616.

Thomas, O. (1923). XXVI.—On some Queensland Phalangeridæ. Annals and Magazine of Natural History 11, 246–250.
XXVI.—On some Queensland Phalangeridæ.Crossref | GoogleScholarGoogle Scholar |

Turnbull, W. D., Lundelius Jr., E. L., and Archer, M. (2003). Dasyurids, perameloids, phalangeroids, and vombatoids from the early Pliocene Hamilton fauna, Victoria, Australia. Bulletin of the American Museum of Natural History 279, 513–540.
Dasyurids, perameloids, phalangeroids, and vombatoids from the early Pliocene Hamilton fauna, Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Van Dyck, S. (1997). Gabriele Neuhäuser. In ‘Brilliant Careers: Women Collectors and Illustrators in Queensland’. (Ed. J. McKay.) pp. 50–52. (Queensland Museum: Brisbane.)

Van Dyck, S., and Strahan, R. (2008). ‘Mammals of Australia.’ (Reed New Holland: Sydney.)

Wagstaffe, R., and Williamson, K. (1947). Cabinet colour-changes in bird-skins and their bearing on racial segregation. British Birds 40, 322–325.

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D. B., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–25.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar |

Westerman, M., Blacket, M. J., Hintz, A., Armstrong, K., Woolley, P. A., and Krajewski, C. (2016). A plethora of planigales: genetic variability and cryptic species in a genus of dasyurid marsupials from northern Australia. Australian Journal of Zoology 64, 303–311.
A plethora of planigales: genetic variability and cryptic species in a genus of dasyurid marsupials from northern Australia.Crossref | GoogleScholarGoogle Scholar |

Wheeler, D., Hope, R. M., Cooper, S. J. B., Dolman, G., Webb, G. C., Bottema, C. D. K., Gooley, A. A., Goodman, M., and Holland, R. A. B. (2001). An orphaned mammalian β-globin gene of ancient evolutionary origin. Proceedings of the National Academy of Sciences 98, 1101–1106.
An orphaned mammalian β-globin gene of ancient evolutionary origin.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E. (2006). ‘Vertebrates of the wet tropics rainforests of Australia: species distributions and biodiversity.’ (Cooperative Research Centre for Tropical Rainforest Ecology and Management: Cairns.)

Winter, J. W., Dillewaard, H. A., Williams, S. E., and Bolitho, E. E. (2004). Possums and gliders of north Queensland: distribution and conservation status. In ‘The Biology of Australian Possums and Gliders’. (Eds. R. L. Goldingay, S. M. Jackson.) pp. 26–50. (Surrey Beatty and Sons: Sydney.)

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |