Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Non-preferred habitat increases the activity area of the endangered northern quoll (Dasyurus hallucatus) in a semi-arid landscape

M. A. Cowan A B * , H. A. Moore C , B. A. Hradsky D , C. J. Jolly A E , J. A. Dunlop A B F , M. L. Wysong G , L. Hernandez-Santin https://orcid.org/0000-0001-8996-3310 H , R. A. Davis https://orcid.org/0000-0002-9062-5754 I , D. O. Fisher J , D. R. Michael K , J. M. Turner L , L. A. Gibson C M , C. G. Knuckey N , M. Henderson I and D. G. Nimmo A
+ Author Affiliations
- Author Affiliations

A School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, 386 Elizabeth Mitchell Drive, Thurgoona, NSW 2640, Australia.

B School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia.

C Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington, WA 6151, Australia.

D School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Vic. 3010, Australia.

E School of Natural Sciences, Macquarie University, Balaclava Road, Macquarie Park, NSW 2109, Australia

F Western Australian Feral Cat Working Group, 58 Sutton Street, Mandurah, WA 6210, Australia.

G Research Institute of Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0810, Australia.

H Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, University of Queensland, St Lucia, Qld. 4067, Australia.

I School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia.

J School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia.

K Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, 386 Elizabeth Mitchell Drive, Thurgoona, NSW 2640, Australia.

L School of Health and Life Sciences, Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Stephenson Place, South Lanarkshire, G72 0LH, UK.

M School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.

N Biologic Environmental Survey, 24 Wickham Street, East Perth, WA 6004, Australia.

* Correspondence to: mcowan@csu.edu.au

Handling Editor: Karl Vernes

Australian Mammalogy 45(2) 138-150 https://doi.org/10.1071/AM22006
Submitted: 26 January 2022  Accepted: 5 September 2022   Published: 28 September 2022

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Animal conservation requires a sound understanding of movement ecology and habitat selection. A key component of this is identifying habitats that animals actively seek or avoid. We quantified habitat selection and investigated the drivers of variability in the short-term activity area of a small, endangered mesopredator, the northern quoll (Dasyurus hallucatus), in the Pilbara region of Western Australia. We collated, standardised, and analysed 14 northern quoll GPS tracking events from four studies conducted between 2014 and 2018. Northern quolls selected activity areas in locations that were more topographically rugged than the broader landscape, characterised by a higher percentage cover of rocky habitat and riverbed, and a lower percentage cover of spinifex sandplain. The size of their activity area also increased with higher percentage cover of non-preferred spinifex sandplain. Therefore, the destruction of habitats preferred by northern quolls – such as mining of rocky habitat – and introduction of structurally simple habitat like spinifex sandplain, is likely to negatively impact resource availability and lead to altered movement patterns that could decrease survival. Future conservation planning should place emphasis on the protection of rugged rocky habitat for northern quolls, as well as efficient movement pathways between patches of this critical habitat.

Keywords: activity area, GPS, habitat use, mesopredator, movement ecology, northern quoll, Pilbara, riverbed, rocky habitat, spinifex sandplain.


References

Aldridge, C. L., and Boyce, M. S. (2007). Linking occurrence and fitness to persistence: Habitat-based approach for endangered greater sage-grouse. Ecological Applications 17, 508–526.
Linking occurrence and fitness to persistence: Habitat-based approach for endangered greater sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Bates, D. M. (2010). ‘lme4: Mixed-effects modeling with R.’ (Springer New York: Madison, Wisconsin, USA.)

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48.
Fitting Linear Mixed-Effects Models Using lme4.Crossref | GoogleScholarGoogle Scholar |

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., and Scheipl, F. (2020). Package ‘lme4’. Available at https://cran.r‐project.org/web/packages/lme4/lme4.pdf

Beasley, J. C., and Rhodes, O. E. (2010). Influence of patch- and landscape-level attributes on the movement behavior of raccoons in agriculturally fragmented landscapes. Canadian Journal of Zoology 88, 161–169.
Influence of patch- and landscape-level attributes on the movement behavior of raccoons in agriculturally fragmented landscapes.Crossref | GoogleScholarGoogle Scholar |

Bennett, A. F. (1990). Habitat corridors and the conservation of small mammals in a fragmented forest environment. Landscape Ecology 4, 109–122.
Habitat corridors and the conservation of small mammals in a fragmented forest environment.Crossref | GoogleScholarGoogle Scholar |

Biologic (2016). Cattle Gorge and Callawa West Vertebrate Fauna Studies. Report prepared for BHP Billiton Iron Ore Pty Ltd. (Biologic: Perth.)

Bjørneraas, K., Van Moorter, B., Rolandsen, C. M., and Herfindal, I. (2010). Screening Global Positioning System Location Data for Errors Using Animal Movement Characteristics. The Journal of Wildlife Management 74, 1361–1366.
Screening Global Positioning System Location Data for Errors Using Animal Movement Characteristics.Crossref | GoogleScholarGoogle Scholar |

Bleicher, S. S. (2017). The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ 5, e3772.
The landscape of fear conceptual framework: definition and review of current applications and misuses.Crossref | GoogleScholarGoogle Scholar |

Bleicher, S. S., and Dickman, C. R. (2020). On the landscape of fear: shelters affect foraging by dunnarts (Marsupialia, Sminthopsis spp.) in a sandridge desert environment. Journal of Mammalogy 101, 281–290.
On the landscape of fear: shelters affect foraging by dunnarts (Marsupialia, Sminthopsis spp.) in a sandridge desert environment.Crossref | GoogleScholarGoogle Scholar |

Bliege Bird, R., Tayor, N., Codding, B. F., and Bird, D. W. (2013). Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proceedings of the Royal Society B: Biological Sciences 280, 20132297.
Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia.Crossref | GoogleScholarGoogle Scholar |

Blundell, G. M., Maier, J. A. K., and Debevec, E. M. (2001). Linear home ranges: Effects of smoothing, sample size, and autocorrelation on kernel estimates. Ecological Monographs 71, 469–489.
Linear home ranges: Effects of smoothing, sample size, and autocorrelation on kernel estimates.Crossref | GoogleScholarGoogle Scholar |

Braithwaite, R. W., and Griffiths, A. D. (1994). Demographic variation and range contraction in the northern quoll, Dasyurus hallucatus (Marsupialia: Dasyuridae). Wildlife Research 21, 203–217.
Demographic variation and range contraction in the northern quoll, Dasyurus hallucatus (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |

Brown, J. S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. Behavioral Ecology and Sociobiology 22, 37–47.
Patch use as an indicator of habitat preference, predation risk, and competition.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of western Australia’s vertebrate fauna: Causes and conservation implications. Biological Conservation 50, 143–198.
Patterns in the modern decline of western Australia’s vertebrate fauna: Causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2020). Climate Data Online. Available at http://www.bom.gov.au/climate/data/ [accessed 30 July 2020]​

Burnham, K. P., and Anderson, D. R. (2001). Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28, 111–119.
Kullback-Leibler information as a basis for strong inference in ecological studies.Crossref | GoogleScholarGoogle Scholar |

Carwardine, J., Nicol, S., Van Leeuwen, S., Walters, B., Firn, J., Reeson, A., Martin, T. G., and Chades, I. (2014). ‘Priority threat management for Pilbara species of conservation significance.’ No. 1486302785. (CSIRO Ecosystems Sciences: Brisbane.)

Cook, A. (2010). ‘Habitat use and home-range of the northern quoll, Dasyurus hallucatus: effects of fire.’ (The University of Western Australia: Perth.)

Cowan, M., Moro, D., Anderson, H., Angus, J., Garretson, S., and Morris, K. (2020a). Aerial baiting for feral cats is unlikely to affect survivorship of northern quolls in the Pilbara region of Western Australia. Wildlife Research 47, 589–598.
Aerial baiting for feral cats is unlikely to affect survivorship of northern quolls in the Pilbara region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cowan, M. A., Dunlop, J. A., Turner, J. M., Moore, H. A., and Nimmo, D. G. (2020b). Artificial refuges to combat habitat loss for an endangered marsupial predator: How do they measure up? Conservation Science and Practice 2, e204.
Artificial refuges to combat habitat loss for an endangered marsupial predator: How do they measure up?Crossref | GoogleScholarGoogle Scholar |

Cramer, V. A., Dunlop, J., Davis, R., Ellis, R., Barnett, B., Cook, A., Morris, K., and van Leeuwen, S. (2016). Research priorities for the northern quoll (Dasyurus hallucatus) in the Pilbara region of Western Australia. Australian Mammalogy 38, 135–148.
Research priorities for the northern quoll (Dasyurus hallucatus) in the Pilbara region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Dellinger, J. A., Cristescu, B., Ewanyk, J., Gammons, D. J., Garcelon, D., Johnston, P., Martins, Q., Thompson, C., Vickers, T. W., Wilmers, C. C., Wittmer, H. U., and Torres, S. G. (2020). Using Mountain Lion Habitat Selection in Management. The Journal of Wildlife Management 84, 359–371.
Using Mountain Lion Habitat Selection in Management.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., and Driscoll, D. A. (2018). Coupling movement and landscape ecology for animal conservation in production landscapes. Proceedings of the Royal Society B: Biological Sciences 285, 20172272.
Coupling movement and landscape ecology for animal conservation in production landscapes.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Dickman, C. R., Nimmo, D. G., and Ritchie, E. G. (2015). Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biological Conservation 190, 60–68.
Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Fist, C. N., and Driscoll, D. A. (2019). Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landscape Ecology 34, 603–614.
Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example.Crossref | GoogleScholarGoogle Scholar |

Douma, J. C., and Weedon, J. T. (2019). Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution 10, 1412–1430.
Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression.Crossref | GoogleScholarGoogle Scholar |

Dunlop, J., Cook, A., and Morris, K. (2014). ‘Pilbara northern quoll project: surveying and monitoring Dasyurus hallucatus in the Pilbara, Western Australia.’ (Department of Parks and Wildlife: Perth.)

Dunlop, J. A., Rayner, K., and Doherty, T. S. (2017). Dietary flexibility in small carnivores: a case study on the endangered northern quoll, Dasyurus hallucatus. Journal of Mammalogy 98, 858–866.
Dietary flexibility in small carnivores: a case study on the endangered northern quoll, Dasyurus hallucatus.Crossref | GoogleScholarGoogle Scholar |

Dunning, J. B., Danielson, B. J., and Pulliam, H. R. (1992). Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175.
Ecological processes that affect populations in complex landscapes.Crossref | GoogleScholarGoogle Scholar |

ESRI (2021). World Imagery, (Featuring Earthstar Geographics (TerraColor NextGen) imagery). Available at https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 [accessed 30 July 2020]

Fancourt, B. A., Hawkins, C. E., Cameron, E. Z., Jones, M. E., and Nicol, S. C. (2015). Devil Declines and Catastrophic Cascades: Is Mesopredator Release of Feral Cats Inhibiting Recovery of the Eastern Quoll? PLoS One 10, e0119303.
Devil Declines and Catastrophic Cascades: Is Mesopredator Release of Feral Cats Inhibiting Recovery of the Eastern Quoll?Crossref | GoogleScholarGoogle Scholar |

Fitzsimons, J. A., and Michael, D. R. (2017). Rocky outcrops: A hard road in the conservation of critical habitats. Biological Conservation 211, 36–44.
Rocky outcrops: A hard road in the conservation of critical habitats.Crossref | GoogleScholarGoogle Scholar |

Gallant, J., Dowling, T., and Read, A. (2009). ‘1 second SRTM Level 2 Derived Digital Elevation Model v1.0.’ (Geoscience Australia: Canberra.)

Gardiner, R., Proft, K., Comte, S., Jones, M., and Johnson, C. N. (2019). Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist. Ecology and Evolution 9, 14005–14014.
Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist.Crossref | GoogleScholarGoogle Scholar |

Girard, I., Ouellet, J.-P., Courtois, R., Dussault, C., and Breton, L. (2002). Effects of Sampling Effort Based on GPS Telemetry on Home-Range Size Estimations. The Journal of Wildlife Management 66, 1290–1300.
Effects of Sampling Effort Based on GPS Telemetry on Home-Range Size Estimations.Crossref | GoogleScholarGoogle Scholar |

Greenwood, L., Bliege Bird, R., and Nimmo, D. (2021). Indigenous burning shapes the structure of visible and invisible fire mosaics. Landscape Ecology 37, 811–827.
Indigenous burning shapes the structure of visible and invisible fire mosaics.Crossref | GoogleScholarGoogle Scholar |

Haapakoski, M., Sundell, J., and Ylönen, H. (2013). Mammalian predator–prey interaction in a fragmented landscape: weasels and voles. Oecologia 173, 1227–1235.
Mammalian predator–prey interaction in a fragmented landscape: weasels and voles.Crossref | GoogleScholarGoogle Scholar |

Harris, S., Cresswell, W. J., Forde, P. G., Trewhella, W. J., Woollard, T., and Wray, S. (1990). Home-range analysis using radio-tracking data–a review of problems and techniques particularly as applied to the study of mammals. Mammal Review 20, 97–123.
Home-range analysis using radio-tracking data–a review of problems and techniques particularly as applied to the study of mammals.Crossref | GoogleScholarGoogle Scholar |

Hazen, E. L., Abrahms, B., Brodie, S., Carroll, G., Welch, H., and Bograd, S. J. (2021). Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models. Movement Ecology 9, 5.
Where did they not go? Considerations for generating pseudo-absences for telemetry-based habitat models.Crossref | GoogleScholarGoogle Scholar |

Heiniger, J., Cameron, S. F., Madsen, T., Niehaus, A. C., and Wilson, R. S. (2020). Demography and spatial requirements of the endangered northern quoll on Groote Eylandt. Wildlife Research 47, 224–238.
Demography and spatial requirements of the endangered northern quoll on Groote Eylandt.Crossref | GoogleScholarGoogle Scholar |

Henderson, M. (2015). ‘The Effects of Mining Infrastructure on Northern quoll Movement and Habitat.’ (Edith Cowan University: Perth.)

Hernandez-Santin, L., and Fisher, D. O. (2022). Community structure of dasyurid marsupials in the arid Pilbara is consistent with a top-down system, their distribution and abundance depend on that of larger members of the guild. Journal of Arid Environments 198, 104680.
Community structure of dasyurid marsupials in the arid Pilbara is consistent with a top-down system, their distribution and abundance depend on that of larger members of the guild.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Santin, L., Goldizen, A. W., and Fisher, D. O. (2016). Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll. Biological Conservation 203, 160–167.
Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Santin, L., Dunlop, J. A., Goldizen, A. W., and Fisher, D. O. (2019). Demography of the northern quoll (Dasyurus hallucatus) in the most arid part of its range. Journal of Mammalogy 100, 1191–1198.
Demography of the northern quoll (Dasyurus hallucatus) in the most arid part of its range.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Santin, L., Henderson, M., Molloy, S. W., Dunlop, J. A., and Davis, R. A. (2020). Spatial ecology of an endangered carnivore, the Pilbara northern quoll. Australian Mammalogy 43, 235–242.
Spatial ecology of an endangered carnivore, the Pilbara northern quoll.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Santin, L., Goldizen, A. W., and Fisher, D. O. (2022). Northern quolls in the Pilbara persist in high-quality habitat, despite a decline trajectory consistent with range eclipse by feral cats. Conservation Science and Practice 4, e12733.
Northern quolls in the Pilbara persist in high-quality habitat, despite a decline trajectory consistent with range eclipse by feral cats.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., and Shortridge, A. (2015). Package ‘raster’. Available at https://cran.r‐project.org/web/packages/raster/raster.pdf

Hill, B. M., and Ward, S. J. (2010). ‘National recovery plan for the northern quoll Dasyurus hallucatus.’ (Department of Natural Resources, Environment, The Arts and Sport: Darwin.)

Holland, G. J., and Bennett, A. F. (2007). Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildlife Research 34, 387–397.
Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Huck, M., Davison, J., and Roper, T. J. (2008). Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildlife Biology 14, 467–477.
Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles.Crossref | GoogleScholarGoogle Scholar |

Ibbett, M., Woinarski, J. C. Z., and Oakwood, M. (2018). Declines in the mammal assemblage of a rugged sandstone environment in Kakadu National Park, Northern Territory, Australia. Australian Mammalogy 40, 181–187.
Declines in the mammal assemblage of a rugged sandstone environment in Kakadu National Park, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Kernohan, B. J., Gitzen, R. A., and Millspaugh, J. J. (2001). Analysis of animal space use and movements. In ‘Radio tracking and animal populations’. (Eds J. J. Millspaugh and J. M. Marzluff.) pp. 125–166. (Academic Press.)
| Crossref |

Kie, J. G. (2013). A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses. Animal Biotelemetry 1, 13.
A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses.Crossref | GoogleScholarGoogle Scholar |

King, D. R. (1989). An assessment of the hazard posed to northern quolls (Dasyurus hallucatus) by aerial baiting with 1080 to control dingoes. Wildlife Research 16, 569–574.
An assessment of the hazard posed to northern quolls (Dasyurus hallucatus) by aerial baiting with 1080 to control dingoes.Crossref | GoogleScholarGoogle Scholar |

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2015). Package ‘lmertest’. Available at https://cran.r‐project.org/web/packages/lmerTest/lmerTest.pdf

Laundré, J. W., Hernández, L., and Altendorf, K. B. (2001). Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Canadian Journal of Zoology 79, 1401–1409.
Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A.Crossref | GoogleScholarGoogle Scholar |

Mac Nally, R., Duncan, R. P., Thomson, J. R., and Yen, J. D. L. (2018). Model selection using information criteria, but is the “best” model any good? Journal of Applied Ecology 55, 1441–1444.
Model selection using information criteria, but is the “best” model any good?Crossref | GoogleScholarGoogle Scholar |

Martin, J. K., and Martin, A. A. (2007). Resource Distribution Influences Mating System in the Bobuck (Trichosurus cunninghami: Marsupialia). Oecologia 154, 227–236.
Resource Distribution Influences Mating System in the Bobuck (Trichosurus cunninghami: Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Maslin, B. R., and van Leeuwen, S. (2008). New taxa of Acacia (Leguminosae: Mimosoideae) and notes on other species from the Pilbara and adjacent desert regions of Western Australia. Nuytsia 18, 139–188.

Mazerolle, M. J., and Mazerolle, M. M. J. (2017). Package ‘AICcmodavg’. Available at https://cran.r‐project.org/web/packages/AICcmodavg/AICcmodavg.pdf

McDonald, P. J., Stewart, A., Schubert, A. T., Nano, C. E. M., Dickman, C. R., and Luck, G. W. (2016). Fire and grass cover influence occupancy patterns of rare rodents and feral cats in a mountain refuge: implications for management. Wildlife Research 43, 121–129.
Fire and grass cover influence occupancy patterns of rare rodents and feral cats in a mountain refuge: implications for management.Crossref | GoogleScholarGoogle Scholar |

McDonald, P. J., Nano, C. E. M., Ward, S. J., Stewart, A., Pavey, C. R., Luck, G. W., and Dickman, C. R. (2017). Habitat as a mediator of mesopredator-driven mammal extinction. Conservation Biology 31, 1183–1191.
Habitat as a mediator of mesopredator-driven mammal extinction.Crossref | GoogleScholarGoogle Scholar |

McGregor, H., Legge, S., Jones, M. E., and Johnson, C. N. (2015). Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10, e0133915.
Feral cats are better killers in open habitats, revealed by animal-borne video.Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., van Leeuwen, S., and Pinder, A. M. (2009). Introduction to the Pilbara Biodiversity Survey, 2002–2007. Records of the Western Australian Museum Supplement 78, 3–89.
Introduction to the Pilbara Biodiversity Survey, 2002–2007.Crossref | GoogleScholarGoogle Scholar |

Michel, E. S., Gullikson, B. S., Brackel, K. L., Schaffer, B. A., Jenks, J. A., and Jensen, W. F. (2020). Habitat selection of white-tailed deer fawns and their dams in the Northern Great Plains. Mammal Research 65, 825–833.
Habitat selection of white-tailed deer fawns and their dams in the Northern Great Plains.Crossref | GoogleScholarGoogle Scholar |

Mitchell, L. J., White, P. C. L., and Arnold, K. E. (2019). The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates. PLoS One 14, e0219357.
The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates.Crossref | GoogleScholarGoogle Scholar |

Molloy, S. W., Davis, R. A., Dunlop, J. A., and van Etten, E. J. B. (2017). Applying surrogate species presences to correct sample bias in species distribution models: a case study using the Pilbara population of the northern quoll. Nature Conservation 18, 27–46.
Applying surrogate species presences to correct sample bias in species distribution models: a case study using the Pilbara population of the northern quoll.Crossref | GoogleScholarGoogle Scholar |

Moore, H. A., Dunlop, J. A., Valentine, L. E., Woinarski, J. C. Z., Ritchie, E. G., Watson, D. M., and Nimmo, D. G. (2019). Topographic ruggedness and rainfall mediate geographic range contraction of a threatened marsupial predator. Diversity and Distributions 25, 1818–1831.
Topographic ruggedness and rainfall mediate geographic range contraction of a threatened marsupial predator.Crossref | GoogleScholarGoogle Scholar |

Moore, H. A., Dunlop, J. A., Jolly, C. J., Kelly, E., Woinarski, J. C. Z., Ritchie, E. G., Burnett, S., van Leeuwen, S., Valentine, L. E., Cowan, M. A., and Nimmo, D. G. (2021a). A brief history of the northern quoll (Dasyurus hallucatus): a systematic review. Australian Mammalogy 44, 185–207.
A brief history of the northern quoll (Dasyurus hallucatus): a systematic review.Crossref | GoogleScholarGoogle Scholar |

Moore, H. A., Michael, D. R., Ritchie, E. G., Dunlop, J. A., Valentine, L. E., Hobbs, R. J., and Nimmo, D. G. (2021b). A rocky heart in a spinifex sea: occurrence of an endangered marsupial predator is multiscale dependent in naturally fragmented landscapes. Landscape Ecology 36, 1359–1376.
A rocky heart in a spinifex sea: occurrence of an endangered marsupial predator is multiscale dependent in naturally fragmented landscapes.Crossref | GoogleScholarGoogle Scholar |

Moore, H. A., Michael, D. R., Dunlop, J. A., Valentine, L. E., Cowan, M. A., and Nimmo, D. G. (2022). Habitat amount is less important than habitat configuration for a threatened marsupial predator in naturally fragmented landscapes. Landscape Ecology 37, 935–949.
Habitat amount is less important than habitat configuration for a threatened marsupial predator in naturally fragmented landscapes.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Hodgens, P., Peacock, D., Mooney, P., Brandle, R., Lynch, C., West, R., Young, C. M., Bannister, H., Copley, P., and Jensen, M. A. (2021). Intensive monitoring, the key to identifying cat predation as a major threat to native carnivore (Dasyurus geoffroii) reintroduction. Biodiversity and Conservation 30, 1547–1571.
Intensive monitoring, the key to identifying cat predation as a major threat to native carnivore (Dasyurus geoffroii) reintroduction.Crossref | GoogleScholarGoogle Scholar |

Muff, S., Signer, J., and Fieberg, J. (2020). Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. Journal of Animal Ecology 89, 80–92.
Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation.Crossref | GoogleScholarGoogle Scholar |

Murphy, B. P., and Davies, H. F. (2014). There is a critical weight range for Australia’s declining tropical mammals. Global Ecology and Biogeography 23, 1058–1061.
There is a critical weight range for Australia’s declining tropical mammals.Crossref | GoogleScholarGoogle Scholar |

Najera-Zuloaga, J., Lee, D.-J., Arostegui, I., and Najera-Zuloaga, M. J. (2020). Package ‘PROreg’. Available at https://cran.r‐project.org/web/packages/PROreg/PROreg.pdf

Nimmo, D. G., Avitabile, S., Banks, S. C., Bliege Bird, R., Callister, K., Clarke, M. F., Dickman, C. R., Doherty, T. S., Driscoll, D. A., Greenville, A. C., Haslem, A., Kelly, L. T., Kenny, S. A., Lahoz-Monfort, J. J., Lee, C., Leonard, S., Moore, H., Newsome, T. M., Parr, C. L., Ritchie, E. G., Schneider, K., Turner, J. M., Watson, S., Westbrooke, M., Wouters, M., White, M., and Bennett, A. F. (2019). Animal movements in fire-prone landscapes. Biological Reviews 94, 981–998.
Animal movements in fire-prone landscapes.Crossref | GoogleScholarGoogle Scholar |

Oakwood, M. (2002). Spatial and social organization of a carnivorous marsupial Dasyurus hallucatus. Journal of Zoology 257, 237–248.
Spatial and social organization of a carnivorous marsupial Dasyurus hallucatus.Crossref | GoogleScholarGoogle Scholar |

Palmer, R., Anderson, H., Richards, B., Craig, M. D., and Gibson, L. (2021). Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator? PLoS One 16, e0251304.
Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator?Crossref | GoogleScholarGoogle Scholar |

Pandey, A. C., and Kulhari, A. (2018). ‘Semi-supervised spatiotemporal classification and trend analysis of satellite images’. pp. 353–363. (Springer: Singapore.)

Peris, A., Closa, F., Marco, I., Acevedo, P., Barasona, J. A., and Casas-Díaz, E. (2020). Towards the comparison of home range estimators obtained from contrasting tracking regimes: the wild boar as a case study. European Journal of Wildlife Research 66, 32.
Towards the comparison of home range estimators obtained from contrasting tracking regimes: the wild boar as a case study.Crossref | GoogleScholarGoogle Scholar |

Perry, G., and Pianka, E. R. (1997). Animal foraging: past, present and future. Trends in Ecology & Evolution 12, 360–364.
Animal foraging: past, present and future.Crossref | GoogleScholarGoogle Scholar |

Polfus, J. L., Hebblewhite, M., and Heinemeyer, K. (2011). Identifying indirect habitat loss and avoidance of human infrastructure by northern mountain woodland caribou. Biological Conservation 144, 2637–2646.
Identifying indirect habitat loss and avoidance of human infrastructure by northern mountain woodland caribou.Crossref | GoogleScholarGoogle Scholar |

Pollock, A. B. (1999). Notes on status, distribution and diet of northern quoll Dasyurus hallucatus in the Mackay-Bowen area, mideastern Queensland. Australian Zoologist 31, 388–395.
Notes on status, distribution and diet of northern quoll Dasyurus hallucatus in the Mackay-Bowen area, mideastern Queensland.Crossref | GoogleScholarGoogle Scholar |

Powell, R. A. (2000) Animal home ranges and territories and home range estimators. In ‘Research Techniques in Animal Ecology: Controversies and Consequences. vol. 442’. (Eds M. C. Pearl, L. Boitani and T. K. Fuller.) pp. 65–110. (Columbia University Press.) http://www.jstor.org/stable/10.7312/boit11340.9

QGIS Development Team (2020). ‘QGIS Geographic Information System.’ (Open Source Geospatial Foundation Project.)

R Core Team (2020). ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing.)

Ramanaidou, E. R., and Morris, R. C. (2010). A synopsis of the channel iron deposits of the Hamersley Province, Western Australia. Applied Earth Science 119, 56–59.
A synopsis of the channel iron deposits of the Hamersley Province, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Riley, S. J., DeGloria, S. D., and Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23–27.

Ruprecht, J. (1996). Arid Zone Hydrology: Pilbara Region of Western Australia. In ‘23rd Hydrology and Water Resources Symposium’ Hobart, Australia, 21–24 May, 1996. pp. 301–305.

Rus, A. I., McArthur, C., Mella, V. S. A., and Crowther, M. S. (2020). Habitat fragmentation affects movement and space use of a specialist folivore, the koala. Animal Conservation 24, 26–37.
Habitat fragmentation affects movement and space use of a specialist folivore, the koala.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Montoya, M. M., Moleón, M., Sánchez-Zapata, J. A., and Tockner, K. (2016). Dry riverbeds: corridors for terrestrial vertebrates. Ecosphere 7, e01508.
Dry riverbeds: corridors for terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar |

Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., and Gitzen, R. A. (1999). Effects of Sample Size on Kernel Home Range Estimates. The Journal of Wildlife Management 63, 739–747.
Effects of Sample Size on Kernel Home Range Estimates.Crossref | GoogleScholarGoogle Scholar |

Shaw, R. E., Spencer, P. B., Gibson, L. A., Dunlop, J. A., Kinloch, J. E., Mokany, K., Byrne, M., Moritz, C., Davie, H., Travouillon, K. J., and Ottewell, K. M. (2022). Linking life history to landscape for threatened species conservation in a multiuse region. Conservation Biology , .
Linking life history to landscape for threatened species conservation in a multiuse region.Crossref | GoogleScholarGoogle Scholar |

Signer, J., and Balkenhol, N. (2015). Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data. Wildlife Society Bulletin 39, 358–363.
Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data.Crossref | GoogleScholarGoogle Scholar |

Signer, J., Balkenhol, N., Ditmer, M., and Fieberg, J. (2015). Does estimator choice influence our ability to detect changes in home-range size? Animal Biotelemetry 3, 16.
Does estimator choice influence our ability to detect changes in home-range size?Crossref | GoogleScholarGoogle Scholar |

Smit, I. P. J., and Grant, C. C. (2009). Managing surface-water in a large semi-arid savanna park: Effects on grazer distribution patterns. Journal for Nature Conservation 17, 61–71.
Managing surface-water in a large semi-arid savanna park: Effects on grazer distribution patterns.Crossref | GoogleScholarGoogle Scholar |

Squires, J. R., DeCesare, N. J., Olson, L. E., Kolbe, J. A., Hebblewhite, M., and Parks, S. A. (2013). Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery. Biological Conservation 157, 187–195.
Combining resource selection and movement behavior to predict corridors for Canada lynx at their southern range periphery.Crossref | GoogleScholarGoogle Scholar |

Stobo-Wilson, A. M., Cremona, T., Murphy, B. P., and Carthew, S. M. (2021). Resource availability drives variation in a marsupial glider’s home-range size. Journal of Zoology 315, 199–212.
Resource availability drives variation in a marsupial glider’s home-range size.Crossref | GoogleScholarGoogle Scholar |

Stratmann, T. S. M., Dejid, N., Calabrese, J. M., Fagan, W. F., Fleming, C. H., Olson, K. A., and Mueller, T. (2021). Resource selection of a nomadic ungulate in a dynamic landscape. PLoS One 16, e0246809.
Resource selection of a nomadic ungulate in a dynamic landscape.Crossref | GoogleScholarGoogle Scholar |

Thomas, H., Cameron, S. F., Campbell, H. A., Micheli-Campbell, M. A., Kirke, E. C., Wheatley, R., and Wilson, R. S. (2021). Rocky escarpment versus savanna woodlands: comparing diet and body condition as indicators of habitat quality for the endangered northern quoll (Dasyurus hallucatus). Wildlife Research 48, 434–443.
Rocky escarpment versus savanna woodlands: comparing diet and body condition as indicators of habitat quality for the endangered northern quoll (Dasyurus hallucatus).Crossref | GoogleScholarGoogle Scholar |

Tilahun, A., and Teferie, B. (2015). Accuracy assessment of land use land cover classification using Google Earth. American Journal of Environmental Protection 4, 193–198.
Accuracy assessment of land use land cover classification using Google Earth.Crossref | GoogleScholarGoogle Scholar |

USGS (2020). Earth Explorer. Available at https://earthexplorer.usgs.gov/ [accessed 30 July 2020]

Van Vreeswyk, A. M. E., Leighton, K. A., Payne, A. L., and Hennig, P. (2004). ‘An inventory and condition survey of the Pilbara region, Western Australia.’ (Department of Agriculture and Food: Perth.)

Viana, D. S., Granados, J. E., Fandos, P., Pérez, J. M., Cano-Manuel, F. J., Burón, D., Fandos, G., Aguado, M. Á. P., Figuerola, J., and Soriguer, R. C. (2018). Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Movement Ecology 6, 1.
Linking seasonal home range size with habitat selection and movement in a mountain ungulate.Crossref | GoogleScholarGoogle Scholar |

Virgós, E., Baniandrés, N., Burgos, T., and Recio, M. R. (2020). Intraguild Predation by the Eagle Owl Determines the Space Use of a Mesopredator Carnivore. Diversity 12, 359.
Intraguild Predation by the Eagle Owl Determines the Space Use of a Mesopredator Carnivore.Crossref | GoogleScholarGoogle Scholar |

Williamson, S. D., van Dongen, R., Trotter, L., Palmer, R., and Robinson, T. P. (2021). Fishing for Feral Cats in a Naturally Fragmented Rocky Landscape Using Movement Data. Remote Sensing 13, 4925.
Fishing for Feral Cats in a Naturally Fragmented Rocky Landscape Using Movement Data.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Armstrong, M., Brennan, K., Fisher, A., Griffiths, A. D., Hill, B., Milne, D. J., Palmer, C., Ward, S., Watson, M., Winderlich, S., and Young, S. (2010). Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia. Wildlife Research 37, 116–126.
Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A., and Harrison, P. (2014) ‘The action plan for Australian mammals 2012.’ (CSIRO publishing.)

Wynn, M. L., Clemente, C., Nasir, A. F. A. A., and Wilson, R. S. (2015). Running faster causes disaster: trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus). Journal of Experimental Biology 218, 433–439.
Running faster causes disaster: trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus).Crossref | GoogleScholarGoogle Scholar |

Wysong, M. L., Hradsky, B. A., Iacona, G. D., Valentine, L. E., Morris, K., and Ritchie, E. G. (2020). Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator. Movement Ecology 8, 18.
Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator.Crossref | GoogleScholarGoogle Scholar |