Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE (Open Access)

The myth of wild dogs in Australia: are there any out there?

Kylie M. Cairns https://orcid.org/0000-0003-3700-2854 A B E , Mathew S. Crowther https://orcid.org/0000-0001-8968-1161 C , Bradley Nesbitt D and Mike Letnic A B
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

C School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.

D School of Environmental and Rural Science, University of New England, Armidale, NSW 2350, Australia.

E Corresponding author. Email: k.cairns@unsw.edu.au

Australian Mammalogy 44(1) 67-75 https://doi.org/10.1071/AM20055
Submitted: 17 August 2020  Accepted: 26 February 2021   Published: 26 March 2021

Journal Compilation © Australian Mammal Society 2022 Open Access CC BY NC ND

Abstract

Hybridisation between wild and domestic canids is a global conservation and management issue. In Australia, dingoes are a distinct lineage of wild-living canid with a controversial domestication status. They are mainland Australia’s apex terrestrial predator. There is ongoing concern that the identity of dingoes has been threatened from breeding with domestic dogs, and that feral dogs have established populations in rural Australia. We collate the results of microsatellite DNA testing from 5039 wild canids to explore patterns of domestic dog ancestry in dingoes and observations of feral domestic dogs across the continent. Only 31 feral dogs were detected, challenging the perception that feral dogs are widespread in Australia. First generation dingo × dog hybrids were similarly rare, with only 27 individuals identified. Spatial patterns of genetic ancestry across Australia identified that dingo populations in northern, western and central Australia were largely free from domestic dog introgression. Our findings challenge the perception that dingoes are virtually extinct in the wild and that feral dogs are common. A shift in terminology from wild dog to dingo would better reflect the identity of these wild canids and allow more nuanced debate about the balance between conservation and management of dingoes in Australia.

Keywords: admixture, Australia, Canis dingo, Canis familiaris, dingo, dog, domestication, feral dog, introgression, wild dog.


References

ABC Landline (2019). Wild Dogs. In ‘Meet the ferals’. (Ed. P Adams) Available at https://iview.abc.net.au/show/meet-the-ferals

Adams, J. R., Lucash, C., Schutte, L., and Waits, L. P. (2007). Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Molecular Ecology 16, 1823–1834.
Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping.Crossref | GoogleScholarGoogle Scholar | 17444895PubMed |

Allen, L. R. (2014). Wild dog control impacts on calf wastage in extensive beef cattle enterprises. Animal Production Science 54, 214–220.
Wild dog control impacts on calf wastage in extensive beef cattle enterprises.Crossref | GoogleScholarGoogle Scholar |

Allen, L. R. (2015). Demographic and functional responses of wild dogs to poison baiting. Ecological Management & Restoration 16, 58–66.
Demographic and functional responses of wild dogs to poison baiting.Crossref | GoogleScholarGoogle Scholar |

Anderson, T. M., vonHoldt, B. M., Candille, S. I., Musiani, M., Greco, C., Stahler, D. R., Smith, D. W., Padhukasahasram, B., Randi, E., Leonard, J. A., Bustamante, C. D., Ostrander, E. A., Tang, H., Wayne, R. K., and Barsh, G. S. (2009). Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343.
Molecular and evolutionary history of melanism in North American gray wolves.Crossref | GoogleScholarGoogle Scholar | 19197024PubMed |

Barnett, B. D. (1986). Eradication and control of feral and free-ranging dogs in the Galapagos Islands. In ‘Proceedings of the Twelfth Vertebrate Pest Conference’. Available at https://digitalcommons.unl.edu/vpc12/8

Bergström, A., Frantz, L., Schmidt, R., Ersmark, E., Lebrasseur, O., Girdland-Flink, L., Lin, A. T., Storå, J., Sjögren, K.-G., Anthony, D., Antipina, E., Amiri, S., Bar-Oz, G., Bazaliiskii, V. I., Bulatović, J., Brown, D., Carmagnini, A., Davy, T., Fedorov, S., Fiore, I., Fulton, D., Germonpré, M., Haile, J., Irving-Pease, E. K., Jamieson, A., Janssens, L., Kirillova, I., Horwitz, L. K., Kuzmanovic-Cvetković, J., Kuzmin, Y., Losey, R. J., Dizdar, D. L., Mashkour, M., Novak, M., Onar, V., Orton, D., Pasarić, M., Radivojević, M., Rajković, D., Roberts, B., Ryan, H., Sablin, M., Shidlovskiy, F., Stojanović, I., Tagliacozzo, A., Trantalidou, K., Ullén, I., Villaluenga, A., Wapnish, P., Dobney, K., Götherström, A., Linderholm, A., Dalén, L., Pinhasi, R., Larson, G., and Skoglund, P. (2020). Origins and genetic legacy of prehistoric dogs. Science 370, 557.
Origins and genetic legacy of prehistoric dogs.Crossref | GoogleScholarGoogle Scholar | 33122379PubMed |

Bohling, J. H., and Waits, L. P. (2015). Factors influencing red wolf–coyote hybridization in eastern North Carolina, USA. Biological Conservation 184, 108–116.
Factors influencing red wolf–coyote hybridization in eastern North Carolina, USA.Crossref | GoogleScholarGoogle Scholar |

Bohling, J. H., Dellinger, J., McVey, J. M., Cobb, D. T., Moorman, C. E., and Waits, L. P. (2016). Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evolutionary Applications 9, 791–804.
Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA.Crossref | GoogleScholarGoogle Scholar | 27330555PubMed |

Boitani, L., Francisci, F., Ciucci, P., and Andreoli, G. (1995). Population biology and ecology of feral dogs in central Italy. In ‘The domestic dog: Its evolution, behaviour, and interactions with people’. (Ed. J. Serpell) pp. 217–244. (Cambridge University Press, UK)

Boitani, L., Ciucci, P., and Ortolani, A. (2006). Behaviour and social ecology of free-ranging dogs. In ‘The Behavioural Biology of Dogs’. (Ed. P. Jensen) pp. 147–165. (Cromwell Press: Trowbridge)

Brookes, V. J., Degeling, C., Van Eeden, L. M., and Ward, M. P. (2020). What is a dingo? The phenotypic classification of dingoes by Aboriginal and Torres Strait islander residents in northern Australia. Animals 10, 1230.
What is a dingo? The phenotypic classification of dingoes by Aboriginal and Torres Strait islander residents in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Cairns, K. M. (2021). What is a dingo – origins, hybridisation and identity. Australian Zoologist , .
What is a dingo – origins, hybridisation and identity.Crossref | GoogleScholarGoogle Scholar |

Cairns, K. M., and Wilton, A. N. (2016). New insights on the history of canids in Oceania based on mitochondrial and nuclear data. Genetica 144, 553–565.
New insights on the history of canids in Oceania based on mitochondrial and nuclear data.Crossref | GoogleScholarGoogle Scholar | 27640201PubMed |

Cairns, K. M., Brown, S. K., Sacks, B. N., and Ballard, J. W. O. (2017). Conservation implications for dingoes from the maternal and paternal genome: multiple populations, dog introgression and demography. Ecology and Evolution 7, 9787–9807.
Conservation implications for dingoes from the maternal and paternal genome: multiple populations, dog introgression and demography.Crossref | GoogleScholarGoogle Scholar | 29188009PubMed |

Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O., and Boyko, A. R. (2018). Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754.
Elucidating biogeographical patterns in Australian native canids using genome wide SNPs.Crossref | GoogleScholarGoogle Scholar | 29889854PubMed |

Cairns, K. M., Nesbitt, B. J., Laffan, S. W., Letnic, M., and Crowther, M. S. (2019). Geographic hot spots of dingo genetic ancestry in southeastern Australia despite hybridisation with domestic dogs. Conservation Genetics 21, 77–90.
Geographic hot spots of dingo genetic ancestry in southeastern Australia despite hybridisation with domestic dogs.Crossref | GoogleScholarGoogle Scholar |

Claridge, A. W., Spencer, R.-J., Wilton, A. N., Jenkins, D. J., Dall, D., and Lapidge, S. J. (2014). When is a dingo not a dingo? Hybridisation with domestic dogs. In ‘Carnivores of Australia: past, present and future’. (Eds A. Glenn, C. Dickman) pp. 151–172. (CSIRO Publishing: Melbourne)

Collins, B., and Mills, V. (2013). Keeping safe around cheeky camp dogs. In ‘ABC Kimberley’. (Australian Broadcasting Corporation: Australia)

Corbett, L. K. (2001). Conservation status of the dingo. In ‘A symposium on the dingo’. (Eds C. R. Dickman, D. Lunney) pp. 10–19. (Royal Zoological Society of New South Wales: Sydney)

Crowther, M. S., Fillios, M., Colman, N., and Letnic, M. (2014). An updated description of the Australian dingo (Canis dingo Meyer, 1793). Journal of Zoology 293, 192–203.
An updated description of the Australian dingo (Canis dingo Meyer, 1793).Crossref | GoogleScholarGoogle Scholar |

Crowther, M. S., Cairns, K. M., van Eeden, L. M., and Letnic, M. (2020). Introgression does not influence the positive ecological and functional role of dingo populations. Australian Zoologist , .
Introgression does not influence the positive ecological and functional role of dingo populations.Crossref | GoogleScholarGoogle Scholar |

Daniels, M. J., and Corbett, L. (2003). Redefining introgressed protected mammals: when is a wildcat a wild cat and a dingo a wild dog? Wildlife Research 30, 213–218.
Redefining introgressed protected mammals: when is a wildcat a wild cat and a dingo a wild dog?Crossref | GoogleScholarGoogle Scholar |

Daniels, M. J., Balharry, D., Hirst, D., Kitchener, A. C., and Aspinall, R. J. (1998). Morphological and pelage characteristics of wild living cats in Scotland: implications for defining the ‘wildcat’. Journal of Zoology 244, 231–247.
Morphological and pelage characteristics of wild living cats in Scotland: implications for defining the ‘wildcat’.Crossref | GoogleScholarGoogle Scholar |

DEPI (2013). Action Statement No. 248 Dingo Canis lupus subsp. dingo. (Victorian Government: Melbourne, Victoria)

Dickman, C. R. (2019). The dingo dilemma: a brief history of debate. In ‘The dingo dilemma: cull, contain or conserve’, 2019, Sydney, NSW. (Eds C. R. Dickman, D. Lunney, T. M. Newsome)

DPIPWE (2013). Guideline Managing Wild Dogs. Department of Primary Industries, Water and Environment. (Tasmanian Government: Tasmania, Australia) Available at https://dpipwe.tas.gov.au/Documents/Guideline%20-%20Managing%20Wild%20Dogs%20%28December%202013%20-%20v1.0%29.pdf

Elledge, A. E., Allen, L. R., Carlsson, B.-L., and Leung, L. K.-P. (2008). An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildlife Research 35, 812–820.
An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation.Crossref | GoogleScholarGoogle Scholar |

Fleming, P., Corbett, L. K., Harden, R., and Thomson, P. (2001). ‘Managing the impacts of dingoes and other wild dogs.’ (Bureau of Rural Sciences: Canberra)

Freedman, A. H., Gronau, I., Schweizer, R. M., Ortega-Del Vecchyo, D., Han, E., Silva, P. M., Galaverni, M., Fan, Z., Marx, P., Lorente-Galdos, B., Beale, H., Ramirez, O., Hormozdiari, F., Alkan, C., Vilà, C., Squire, K., Geffen, E., Kusak, J., Boyko, A. R., Parker, H. G., Lee, C., Tadigotla, V., Siepel, A., Bustamante, C. D., Harkins, T. T., Nelson, S. F., Ostrander, E. A., Marques-Bonet, T., Wayne, R. K., and Novembre, J. (2014). Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genetics 10, e1004016.
Genome Sequencing Highlights the Dynamic Early History of Dogs.Crossref | GoogleScholarGoogle Scholar | 24453982PubMed |

Galov, A., Fabbri, E., Caniglia, R., Arbanasić, H., Lapalombella, S., Florijančić, T., Bošković, I., Galaverni, M., and Randi, E. (2015). First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. Royal Society Open Science 2, 150450.
First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers.Crossref | GoogleScholarGoogle Scholar | 27019731PubMed |

Gompper, M. E. (2013). ‘Free-ranging dogs and wildlife conservation.’ (Oxford University Press)

Gopalakrishnan, S., Sinding, M.-H. S., Ramos-Madrigal, J., Niemann, J., Samaniego Castruita, J. A., Vieira, F. G., Carøe, C., Montero, M. d. M., Kuderna, L., Serres, A., González-Basallote, V. M., Liu, Y.-H., Wang, G.-D., Marques-Bonet, T., Mirarab, S., Fernandes, C., Gaubert, P., Koepfli, K.-P., Budd, J., Rueness, E. K., Sillero, C., Heide-Jørgensen, M. P., Petersen, B., Sicheritz-Ponten, T., Bachmann, L., Wiig, Ø., Hansen, A. J., and Gilbert, M. T. P. (2018). Interspecific Gene Flow Shaped the Evolution of the Genus Canis. Current Biology 28, e5–3449.
Interspecific Gene Flow Shaped the Evolution of the Genus Canis.Crossref | GoogleScholarGoogle Scholar | 30344120PubMed |

Hansson, B., Tarka, M., Dawson, D. A., and Horsburgh, G. J. (2012). Hybridization but no evidence for backcrossing and introgression in a sympatric population of Great Reed Warblers and Clamorous Reed Warbler PLOS ONE 7, e31667.
Hybridization but no evidence for backcrossing and introgression in a sympatric population of Great Reed Warblers and Clamorous Reed WarblerCrossref | GoogleScholarGoogle Scholar | 22384052PubMed |

Harrison, R. G., and Larson, E. L. (2014). Hybridization, Introgression, and the Nature of Species Boundaries. Journal of Heredity 105, 795–809.
Hybridization, Introgression, and the Nature of Species Boundaries.Crossref | GoogleScholarGoogle Scholar |

Home, C., Bhatnagar, Y. V., and Vanak, A. T. (2018). Canine Conundrum: domestic dogs as an invasive species and their impacts on wildlife in India. Animal Conservation 21, 275–282.
Canine Conundrum: domestic dogs as an invasive species and their impacts on wildlife in India.Crossref | GoogleScholarGoogle Scholar |

Hudson, E., Brookes, V., and Ward, M. (2018). Demographic studies of owned dogs in the Northern Peninsula Area, Australia, to inform population and disease management strategies. Australian Veterinary Journal 96, 487–494.
Demographic studies of owned dogs in the Northern Peninsula Area, Australia, to inform population and disease management strategies.Crossref | GoogleScholarGoogle Scholar | 30478842PubMed |

Hughes, J., and Macdonald, D. W. (2013). A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation 157, 341–351.
A review of the interactions between free-roaming domestic dogs and wildlife.Crossref | GoogleScholarGoogle Scholar |

Jackson, S. M., Groves, C. P., Fleming, P. J. S., Aplin, K. P., Eldridge, M. D. B., Gonzalez, A., and Helgen, K. M. (2017). The wayward dog: is the Australian native dog or dingo a distinct species? Zootaxa 4317, 201–224.
The wayward dog: is the Australian native dog or dingo a distinct species?Crossref | GoogleScholarGoogle Scholar |

Jackson, S. M., Fleming, P. J. S., Eldridge, M. D. B., Ingleby, S., Flannery, T., Johnson, R. N., Cooper, S. J. B., Mitchell, K. J., Souilmi, Y., Cooper, A., Wilson, D. E., and Helgen, K. M. (2019). The Dogma of Dingoes-Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212.
The Dogma of Dingoes-Taxonomic status of the dingo: A reply to Smith et al.Crossref | GoogleScholarGoogle Scholar |

Jones, E. (1990). Physical characteristics and taxonomic status of wild canids, Canis familiaris, from the eastern highlands of Victoria. Wildlife Research 17, 69–81.
Physical characteristics and taxonomic status of wild canids, Canis familiaris, from the eastern highlands of Victoria.Crossref | GoogleScholarGoogle Scholar |

Jones, E. (2009). Hybridisation between the dingo, Canis lupus dingo, and the domestic dog, Canis lupus familiaris, in Victoria: a critical review. Australian Mammalogy 31, 1–7.
Hybridisation between the dingo, Canis lupus dingo, and the domestic dog, Canis lupus familiaris, in Victoria: a critical review.Crossref | GoogleScholarGoogle Scholar |

Kitchener, A. C., Yamaguchi, N., Ward, J. M., and Macdonald, D. W. (2005). A diagnosis for the Scottish wildcat (Felis silvestris): a tool for conservation action for a critically-endangered felid. Animal Conservation 8, 223–237.
A diagnosis for the Scottish wildcat (Felis silvestris): a tool for conservation action for a critically-endangered felid.Crossref | GoogleScholarGoogle Scholar |

Koungoulos, L. (2020). Old dogs, new tricks: 3D geometric analysis of cranial morphology supports ancient population substructure in the Australian dingo. Zoomorphology 139, 263–275.
Old dogs, new tricks: 3D geometric analysis of cranial morphology supports ancient population substructure in the Australian dingo.Crossref | GoogleScholarGoogle Scholar |

Kreplins, T. L., Gaynor, A., Kennedy, M. S., Baudains, C. M., Adams, P., Bateman, P. W., and Fleming, P. A. (2019). What to call a dog? A review of the common names for Australian free-ranging dogs. Pacific Conservation Biology 25, 124–134.
What to call a dog? A review of the common names for Australian free-ranging dogs.Crossref | GoogleScholarGoogle Scholar |

Letnic, M. (2012). Us and them correspondence. In ‘Quarterly Essay - Great Expectations: Government, Entitlement and an Angry Nation’, 46 edn. (Ed. L. Tingle) pp. 79–81. (Black Inc.: Victoria, Australia)

Letnic, M., and Koch, F. (2010). Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecology 35, 167–175.
Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence.Crossref | GoogleScholarGoogle Scholar |

Letnic, M., and Crowther, M. (2020). Pesticide use is linked to increased body size in a large mammalian carnivore. Biological Journal of the Linnean Society , .
Pesticide use is linked to increased body size in a large mammalian carnivore.Crossref | GoogleScholarGoogle Scholar |

Letnic, M., Ritchie, E. G., and Dickman, C. R. (2012). Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biological Reviews of the Cambridge Philosophical Society 87, 390–413.
Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study.Crossref | GoogleScholarGoogle Scholar | 22051057PubMed |

Letnic, M., Baker, L., and Nesbitt, B. (2013). Ecologically functional landscapes and the role of dingoes as trophic regulators in south-eastern Australia and other habitats. Ecological Management & Restoration 14, 101–105.
Ecologically functional landscapes and the role of dingoes as trophic regulators in south-eastern Australia and other habitats.Crossref | GoogleScholarGoogle Scholar |

Ma, G. C., Ford, J., Lucas, L., Norris, J. M., Spencer, J., Withers, A.-M., and Ward, M. P. (2020). “They reckon they’re man’s best friend and I believe that.” understanding relationships with dogs in Australian Aboriginal communities to inform effective dog population management. Animals 10, 810.
“They reckon they’re man’s best friend and I believe that.” understanding relationships with dogs in Australian Aboriginal communities to inform effective dog population management.Crossref | GoogleScholarGoogle Scholar |

Macdonald, D. W., Yamaguchi, N., Kitchener, A. C., Daniels, M., Kilshaw, K., and Driscoll, C. (2010). Reversing cryptic extinction: the history, present and future of the Scottish Wildcat. In ‘Biology and conservation of wild felids’. (Eds D. W. Macdonald, A. Loveridge) pp. 471–492. (Oxford University Press: Oxford)

Mattucci, F., Galaverni, M., Lyons, L. A., Alves, P. C., Randi, E., Velli, E., Pagani, L., and Caniglia, R. (2019). Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Scientific Reports 9, 11612.
Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations.Crossref | GoogleScholarGoogle Scholar | 31406125PubMed |

Miller, C. R., Adams, J. R., and Waits, L. P. (2003). Pedigree-based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Molecular Ecology 12, 3287–3301.
Pedigree-based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population.Crossref | GoogleScholarGoogle Scholar | 14629346PubMed |

Morrant, D. S., Johnson, C. N., Butler, J. R. A., and Congdon, B. C. (2017). Biodiversity friend or foe: land use by a top predator, the dingo in contested landscapes of the Australian Wet Tropics. Austral Ecology 42, 252–264.
Biodiversity friend or foe: land use by a top predator, the dingo in contested landscapes of the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar |

Newsome, A. E., and Corbett, L. K. (1985). The Identity of the Dingo III. The incidence of Dingoes, Dogs and Hybrids and their coat colours in remote and settled regions of Australia. Australian Journal of Zoology 33, 363–373.
The Identity of the Dingo III. The incidence of Dingoes, Dogs and Hybrids and their coat colours in remote and settled regions of Australia.Crossref | GoogleScholarGoogle Scholar |

Newsome, A. E., Corbett, L. K., and Carpenter, S. M. (1980). The Identity of the Dingo I. Morphological discriminants of Dingo and Dog skulls. Australian Journal of Zoology 28, 615–625.
The Identity of the Dingo I. Morphological discriminants of Dingo and Dog skulls.Crossref | GoogleScholarGoogle Scholar |

Newsome, A. E., Catling, P. C., Cooke, B. D., and Smyth, R. (2001). Two ecological universes separated by the Dingo Barrier Fence in semi-arid Australia: interactions between landscapes, herbivory and carnivory, with and without dingoes. The Rangeland Journal 23, 71–98.
Two ecological universes separated by the Dingo Barrier Fence in semi-arid Australia: interactions between landscapes, herbivory and carnivory, with and without dingoes.Crossref | GoogleScholarGoogle Scholar |

Newsome, T. M., Stephens, D., Ballard, G.-A., Dickman, C. R., and Fleming, P. J. S. (2013). Genetic profile of dingoes (Canis lupus dingo) and free-roaming domestic dogs (C. l. familiaris) in the Tanami Desert, Australia. Wildlife Research 40, 196–206.
Genetic profile of dingoes (Canis lupus dingo) and free-roaming domestic dogs (C. l. familiaris) in the Tanami Desert, Australia.Crossref | GoogleScholarGoogle Scholar |

Newsome, T. M., Ballard, G.-A., Crowther, M. S., Dickman, C. R., and Fleming, P. J. S. (2014). Dietary niche overlap of free-roaming dingoes and domestic dogs: the role of human provided food. Journal of Mammalogy 92, 392–403.
Dietary niche overlap of free-roaming dingoes and domestic dogs: the role of human provided food.Crossref | GoogleScholarGoogle Scholar |

NSW Threatened Species Scientific Committee (2009). Predation and Hybridisation by Feral Dogs (Canis lupus familiaris) - key threatening process listing. In ‘Schedule 3 of Threatened Species Conservation Act. New South Wales (Australia)’. Available at https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee/determinations/final-determinations/2008-2010/predation-and-hybridisation-by-feral-dogs-canis-lupus-familiaris-key-threatening-process-listing

Oskarsson, M. C. R., Klütsch, C. F. C., Boonyaprakob, U., Wilton, A., Tanabe, Y., and Savolainen, P. (2011). Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proceedings of the Royal Society B: Biological Sciences 279, 967–974.
Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs.Crossref | GoogleScholarGoogle Scholar |

Parr, W. C. H., Wilson, L. A. B., Wroe, S., Colman, N. J., Crowther, M. S., and Letnic, M. (2016). Cranial shape and the modularity of hybridization in dingoes and dogs; hybridization does not spell the end for native morphology. Evolutionary Biology 43, 171–187.
Cranial shape and the modularity of hybridization in dingoes and dogs; hybridization does not spell the end for native morphology.Crossref | GoogleScholarGoogle Scholar |

Pilot, M., Malewski, T., Moura, A. E., Grzybowski, T., Oleński, K., Ruść, A., Kamiński, S., Fadel, F. R., Mills, D. S., Alagaili, A. N., Mohammed, O. B., Kłys, G., Okhlopkov, I. M., Suchecka, E., and Bogdanowicz, W. (2015). On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia. Proceedings of the Royal Society B: Biological Sciences 282, 20152189.
On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia.Crossref | GoogleScholarGoogle Scholar | 26631564PubMed |

QGIS (2020). QGIS Geographic Information System. 3.12 edn. (Open Source Geospatial Foundation Project: http://qgis.org/)

Reponen, S. E. M., Brown, S. K., Barnett, B. D., and Sacks, B. N. (2014). Genetic and morphometric evidence on a Galápagos Island exposes founder effects and diversification in the first-known (truly) feral western dog population. Molecular Ecology 23, 269–283.
Genetic and morphometric evidence on a Galápagos Island exposes founder effects and diversification in the first-known (truly) feral western dog population.Crossref | GoogleScholarGoogle Scholar |

Salvatori, V., Donfrancesco, V., Trouwborst, A., Boitani, L., Linnell, J. D. C., Alvares, F., Åkesson, M., Balys, V., Blanco, J. C., Chiriac, S., Cirovic, D., Groff, C., Guinot-Ghestem, M., Huber, D., Kojola, I., Kusak, J., Kutal, M., Iliopulos, Y., Ionescu, O., Majic Skrbinsek, A., Mannil, P., Marucco, F., Melovski, D., Mysłajek, R. W., Nowak, S., Ozolins, J., Rauer, G., Reinhardt, I., Rigg, R., Schley, L., Skrbinsek, T., Svensson, L., Trajce, A., Trbojevic, I., Tzingarska, E., von Arx, M., and Ciucci, P. (2020). European agreements for nature conservation need to explicitly address wolf-dog hybridisation. Biological Conservation 248, 108525.
European agreements for nature conservation need to explicitly address wolf-dog hybridisation.Crossref | GoogleScholarGoogle Scholar |

Schmutz, S. M., Berryere, T. G., Barta, J. L., Reddick, K. D., and Schmutz, J. K. (2007). Agouti sequence Polymorphisms in coyotes, wolves and dogs suggest hybridization. Journal of Heredity 98, 351–355.
Agouti sequence Polymorphisms in coyotes, wolves and dogs suggest hybridization.Crossref | GoogleScholarGoogle Scholar |

Schweizer, R. M., Durvasula, A., Smith, J., Vohr, S. H., Stahler, D. R., Galaverni, M., Thalmann, O., Smith, D. W., Randi, E., Ostrander, E. A., Green, R. E., Lohmueller, K. E., Novembre, J., and Wayne, R. K. (2018). Natural selection and origin of a melanistic allele in North American gray wolves. Molecular Biology and Evolution 35, 1190–1209.
Natural selection and origin of a melanistic allele in North American gray wolves.Crossref | GoogleScholarGoogle Scholar | 29688543PubMed |

Senn, H. V., Ghazali, M., Kaden, J., Barclay, D., Harrower, B., Campbell, R. D., Macdonald, D. W., and Kitchener, A. C. (2019). Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration. Evolutionary Applications 12, 399–414.
Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration.Crossref | GoogleScholarGoogle Scholar | 30828363PubMed |

Smith, B. P., Cairns, K. M., Adams, J. W., Newsome, T. M., Fillios, M., Deaux, E. C., Parr, W. C. H., Letnic, M., van Eeden, L. M., Appleby, R. G., Bradshaw, C. J. A., Savolainen, P., Ritchie, E. G., Nimmo, D. G., Archer-Lean, C., Greenville, A. C., Dickman, C. R., Watson, L., Moseby, K. E., Doherty, T. S., Wallach, A. D., Morrant, D. S., and Crowther, M. S. (2019). Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197.
Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793.Crossref | GoogleScholarGoogle Scholar |

Stephens, D., Wilton, A. N., Fleming, P. J. S., and Berry, O. (2015). Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Molecular Ecology 24, 5643–5656.
Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs.Crossref | GoogleScholarGoogle Scholar | 26514639PubMed |

Surbakti, S., Parker, H. G., McIntyre, J. K., Maury, H. K., Cairns, K. M., Selvig, M., Pangau-Adam, M., Safonpo, A., Numberi, L., Runtuboi, D. Y. P., Davis, B. W., and Ostrander, E. A. (2020). New Guinea highland wild dogs are the original New Guinea singing dogs. Proceedings of the National Academy of Sciences 117, 24369.
New Guinea highland wild dogs are the original New Guinea singing dogs.Crossref | GoogleScholarGoogle Scholar |

van Eeden, L. M., Crowther, M. S., Dickman, C. R., and Newsome, T. M. (2020). Wicked “wild dogs”: Australian public awareness of and attitudes towards dingoes and dingo management. Australian Zoologist , .
Wicked “wild dogs”: Australian public awareness of and attitudes towards dingoes and dingo management.Crossref | GoogleScholarGoogle Scholar |

Vilà, C., and Wayne, R. K. (1999). Hybridization between wolves and dogs. Conservation Biology 13, 195–198.
Hybridization between wolves and dogs.Crossref | GoogleScholarGoogle Scholar |

vonHoldt, B. M., and Aardema, M. L. (2020). Updating the Bibliography of Interbreeding among Canis in North America. Journal of Heredity 111, 249–262.
Updating the Bibliography of Interbreeding among Canis in North America.Crossref | GoogleScholarGoogle Scholar |

vonHoldt, B. M., Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon, P., Degenhardt, J. D., Boyko, A. R., Earl, D. A., Auton, A., Reynolds, A., Bryc, K., Brisbin, A., Knowles, J. C., Mosher, D. S., Spady, T. C., Elkahloun, A., Geffen, E., Pilot, M., Jedrzejewski, W., Greco, C., Randi, E., Bannasch, D., Wilton, A., Shearman, J., Musiani, M., Cargill, M., Jones, P. G., Qian, Z., Huang, W., Ding, Z.-L., Zhang, Y.-p., Bustamante, C. D., Ostrander, E. A., Novembre, J., and Wayne, R. K. (2010). Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902.
Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication.Crossref | GoogleScholarGoogle Scholar | 20237475PubMed |

vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E., Pilot, M., Jedrzejewski, W., Jedrzejewska, B., Sidorovich, V., Greco, C., Randi, E., Musiani, M., Kays, R., Bustamante, C. D., Ostrander, E. A., Novembre, J., and Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research 21, 1294–1305.
A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids.Crossref | GoogleScholarGoogle Scholar | 21566151PubMed |

vonHoldt, B. M., Cahill, J. A., Fan, Z., Gronau, I., Robinson, J., Pollinger, J. P., Shapiro, B., Wall, J., and Wayne, R. K. (2016). Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Science Advances 2, e1501714.
Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf.Crossref | GoogleScholarGoogle Scholar | 29713682PubMed |

Wallach, A. D., Ramp, D., and O’Neill, A. J. (2017). Cattle mortality on a predator-friendly station in central Australia. Journal of Mammalogy 98, 45–52.
Cattle mortality on a predator-friendly station in central Australia.Crossref | GoogleScholarGoogle Scholar |

Wilton, A. (2001). DNA methods of assessing Australian dingo purity. In ‘A Symposium on the dingo’. (Eds C. R. Dickman, D. Lunney) pp. 49–55. (Royal Zoological Society of New South Wales: Sydney)

Wilton, A. N., Steward, D. J., and Zafiris, K. (1999). Microsatellite variation in the Australian dingo. Journal of Heredity 90, 108–111.
Microsatellite variation in the Australian dingo.Crossref | GoogleScholarGoogle Scholar |

Zhang, S.-J., Wang, G.-D., Ma, P., Zhang, L.-l., Yin, T.-T., Liu, Y.-h., Otecko, N. O., Wang, M., Ma, Y.-p., Wang, L., Mao, B., Savolainen, P., and Zhang, Y.-p. (2020). Genomic regions under selection in the feralization of the dingoes. Nature Communications 11, 671.
Genomic regions under selection in the feralization of the dingoes.Crossref | GoogleScholarGoogle Scholar | 32015346PubMed |