Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Major Histocompatibility Complex Class II in the red-tailed phascogale (Phascogale calura)

Eden M. Hermsen A , Lauren J. Young A and Julie M. Old A B
+ Author Affiliations
- Author Affiliations

A School of Science and Health, Hawkesbury, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.

B Corresponding author. Email: j.old@westernsydney.edu.au

Australian Mammalogy 39(1) 28-32 https://doi.org/10.1071/AM16002
Submitted: 11 January 2016  Accepted: 27 April 2016   Published: 10 June 2016

Abstract

Diversity in major histocompatibility complex (MHC) genes can be correlated with the level of immunological fitness of an individual or group of individuals. This study tested published primer sets designed to amplify fragments of the MHC Class II DAB and DBB genes to amplify the equivalent gene fragments in red-tailed phascogales (Phascogale calura). Seventeen genomic DNA samples extracted from phascogale muscle tissue were used to amplify the initial DAB and DBB fragments; however, only DAB PCR proved successful. The fragments were 172 bp in length between the primers and had a high level of identity to other known marsupial MHC Class II DAB gene sequences (89–98%), including those of the koala (Phascolarctos cinereus), Tasmanian devil (Sarcophilus harrisii), common brushtail possum (Trichosurus vulpecula) and several wallaby species. Multiple sequence alignment revealed limited variability of MHC Class II genes between the individuals, but eight individual sequences in total. Genomic DNA was subsequently extracted from three fresh red-tailed phascogale scat samples and DAB fragments successfully amplified. The technique will allow for red-tailed phascogales to be sampled non-invasively in the wild and to determine the level of MHC diversity among individuals in the population.

Additional keywords: dasyurid, immunology, marsupial, MHC, non-invasive, scat.


References

Alpers, D. L., Taylor, A. C., Sunnucks, P., Bellman, S. A., and Sherwin, W. B. (2003). Pooling hair samples to increase DNA yield for PCR. Conservation Genetics 4, 779–788.
Pooling hair samples to increase DNA yield for PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlyrsL0%3D&md5=f1c7a0c943543cdead5692dfcc678b3cCAS |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=4d6cad734918abb19a3c6605e2334506CAS | 2231712PubMed |

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., and Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40, W597–W603.
ExPASy: SIB bioinformatics resource portal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCqu7c%3D&md5=45741f596342dd970ea1b51289558052CAS | 22661580PubMed |

Baillie, J., and Groombridge, B. (Eds) (1996). ‘IUCN Red List of Threatened Animals.’ (IUCN – The World Conservation Union: Gland, Switzerland.)

Banks, S. C., Piggott, M. P., Hansen, B. D., Robinson, N. A., and Taylor, A. C. (2002). Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA. Australian Journal of Zoology 50, 193–204.

Bernatchez, L., and Landry, C. (2003). MHC studies in non-model vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology 16, 363–377.
MHC studies in non-model vertebrates: what have we learned about natural selection in 15 years?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Gqtbo%3D&md5=fcdcb706f4d39ca2c24101b806f26358CAS | 14635837PubMed |

Bradley, A. J. (1987). Stress and mortality in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae). General and Comparative Endocrinology 67, 85–100.
Stress and mortality in the red-tailed phascogale, Phascogale calura (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2szgsFCqsg%3D%3D&md5=8faaf3ad42543aa6f3535fe5460dcccdCAS | 3623073PubMed |

Bradley, A. J., Foster, W. K., and Taggart, D. A. (2008). Red-tailed phascogale (Phascogale calura). In ‘The Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 101–102. (New Holland: Sydney.)

Browning, T. L., Belov, K., Miller, R. D., and Eldridge, M. D. (2004). Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii). Immunogenetics 55, 791–795.
Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFeqt7Y%3D&md5=f479145eaa2c9e1a57bc1612a8de958bCAS | 14752580PubMed |

Cheng, Y., Sanderson, C., Jones, M., and Belov, K. (2012). Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64, 525–533.
Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFCrtrs%3D&md5=4eac2eef88bb00ff211ab98a94e2bc3cCAS | 22460528PubMed |

Dickman, C. R., and Braithwaite, R. W. (1992). Post-mating mortality of males in the dasyurid marsupials, Dasyurus and Parantechinus. Journal of Mammalogy 73, 143–147.
Post-mating mortality of males in the dasyurid marsupials, Dasyurus and Parantechinus.Crossref | GoogleScholarGoogle Scholar |

Ellison, A., Allainguillaume, J., Girdwood, S., Pachebat, J., Peat, K. M., Wright, P., and Consuegra, S. (2012). Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proceedings of the Royal Society B: Biological Sciences 279, 5004–5013.
Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FmtVCrsw%3D%3D&md5=da8ab001b47413b85fa01ef623f881d7CAS | 23075838PubMed |

Foster, W. K., and Taggart, D. A. (2008). Generation of sex ratio biases in the red-tailed phascogale (Phascogale calura). Reproduction, Fertility and Development 20, 275–280.
Generation of sex ratio biases in the red-tailed phascogale (Phascogale calura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2Fpsl2qsA%3D%3D&md5=8046050319a44cbba5e359007b8f6648CAS |

Foster, W. K., Bradley, A. J., Caton, W., and Taggart, D. A. (2006). Comparison of growth and development of the red-tailed phascogale (Phascogale calura) in three captive colonies. Australian Journal of Zoology 54, 343–352.
Comparison of growth and development of the red-tailed phascogale (Phascogale calura) in three captive colonies.Crossref | GoogleScholarGoogle Scholar |

Foster, W. K., Caton, W., Thomas, J., Cox, S., and Taggart, D. A. (2008). Timing of births and reproductive success in captive red-tailed phascogales, Phascogale calura. Journal of Mammalogy 89, 1136–1144.
Timing of births and reproductive success in captive red-tailed phascogales, Phascogale calura.Crossref | GoogleScholarGoogle Scholar |

Friend, T. (2008). Phascogale calura. In ‘IUCN 2008 Red List of Threatened Species. Version 2014.3. Available at: http://www.iucnredlist.org [accessed 9 February 2015].

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=586286639e90178e0f019e36f1f390f7CAS |

Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., Pyecroft, S., Restani, M., and Wiersma, J. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation 131, 307–324.
Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Hedrick, P. W. (2002). Pathogen resistance and genetic variation at MHC loci. Evolution 56, 1902–1908.
Pathogen resistance and genetic variation at MHC loci.Crossref | GoogleScholarGoogle Scholar | 12449477PubMed |

Hedrick, P. W., Lee, R. N., and Buchanan, C. (2003). Canine parvovirus enteritis, canine distemper, and major histocompatibility complex genetic variation in Mexican wolves. Journal of Wildlife Diseases 39, 909–913.
Canine parvovirus enteritis, canine distemper, and major histocompatibility complex genetic variation in Mexican wolves.Crossref | GoogleScholarGoogle Scholar | 14733289PubMed |

Kurtz, J., Kalbe, M., Aeschlimann, P. B., Häberli, M. A., Wegner, K. M., Reusch, T. B., and Milinski, M. (2004). Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proceedings of the Royal Society of London. Series B, Biological Sciences 271, 197–204.
Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2ks7Y%3D&md5=f68feca91e4007adcb30d39336b9d449CAS |

Lau, Q., Jobbins, S. E., Belov, K., and Higgins, D. P. (2013). Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus). Immunogenetics 65, 37–46.
Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1KqsQ%3D%3D&md5=7fc23bd6a038ab78884367a026737b27CAS | 23089959PubMed |

Lau, Q., Jaratlerdsiri, W., Griffith, J. E., Gongora, J., and Higgins, D. P. (2014). MHC class II diversity of koala (Phascolarctos cinereus) populations across their range. Heredity 113, 287–296.
MHC class II diversity of koala (Phascolarctos cinereus) populations across their range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVWitb8%3D&md5=ce4ef7e472264af3a968901a654c231fCAS | 24690756PubMed |

Morris, K., Austin, J. J., and Belov, K. (2013). Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemic. Biology Letters 9, 20120900.
Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemic.Crossref | GoogleScholarGoogle Scholar | 23221872PubMed |

Piertney, S. B., and Oliver, M. K. (2006). The evolutionary ecology of the major histocompatibility complex. Heredity 96, 7–21.
| 1:CAS:528:DC%2BD28XjsFOrsLY%3D&md5=23c88dd1ff53c746850bcf7d652669aaCAS | 16094301PubMed |

Radwan, J., Biedrzyck, A., and Babik, W. (2010). Does reduced MHC diversity decrease viability of vertebrate populations? Biological Conservation 143, 537–544.
Does reduced MHC diversity decrease viability of vertebrate populations?Crossref | GoogleScholarGoogle Scholar |

Short, J., Hide, A., and Stone, M. (2011). Habitat requirements of the endangered red-tailed phascogale, Phascogale calura. Wildlife Research 38, 359–369.
Habitat requirements of the endangered red-tailed phascogale, Phascogale calura.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Marzec, J., Cheng, Y., Jones, M., and Belov, K. (2010). MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proceedings. Biological Sciences 277, 2001–2006.
MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFaisrg%3D&md5=2eb180bb3ec04e6cdb01e6c34a707176CAS |

Sloane, M. A., Sunnucks, P., Alpers, D., Beheregaray, L. B., and Taylor, A. C. (2000). Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method. Molecular Ecology 9, 1233–1240.
Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCmur4%3D&md5=10dba69b8842d0a5d5484a7dc109d977CAS | 10972763PubMed |

Smith, S., Belov, K., and Hughes, J. (2010). MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial. Conservation Genetics 11, 269–278.
MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial.Crossref | GoogleScholarGoogle Scholar |

Stannard, H. J., and Old, J. M. (2011). Digestibility of feeding regimes of the red-tailed phascogale (Phascogale calura) and the kultarr (Antechinomys laniger) in captivity. Australian Journal of Zoology 59, 257–263.
Digestibility of feeding regimes of the red-tailed phascogale (Phascogale calura) and the kultarr (Antechinomys laniger) in captivity.Crossref | GoogleScholarGoogle Scholar |

Stannard, H. J., Borthwick, C. R., Ong, O., and Old, J. M. (2013). Longevity and breeding in captive red-tailed phascogales (Phascogale calura). Australian Mammalogy 35, 217–219.
Longevity and breeding in captive red-tailed phascogales (Phascogale calura).Crossref | GoogleScholarGoogle Scholar |

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=bd79e433d89386da1a3bce8c1393bd01CAS | 7984417PubMed |

Van Dyck, S. and Strahan, R. 2008. ‘The Mammals of Australia.’ (New Holland Publishers: Sydney.)

Walker, F. M., Horsup, A., and Taylor, A. C. (2009). Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats. Molecular Ecology Resources 9, 720–724.
| 1:CAS:528:DC%2BD1MXls1Ggtb0%3D&md5=52667fdd03e9bcd8f23a93e464de20d6CAS | 21564730PubMed |

Walker, F. M., Sunnucks, P., and Taylor, A. C. (2006). Genotyping of “captured” hairs reveals burrow-use and ranging behaviour of southern hairy-nosed wombats. Journal of Mammalogy 87, 690–699.
Genotyping of “captured” hairs reveals burrow-use and ranging behaviour of southern hairy-nosed wombats.Crossref | GoogleScholarGoogle Scholar |

Woolnough, A. P., Johnson, C. N., and Horsup, A. B. (1998). The short-term effect of radio-packages on a free-ranging large herbivore, the northern hairy-nosed wombat. Wildlife Research 25, 561–565.
The short-term effect of radio-packages on a free-ranging large herbivore, the northern hairy-nosed wombat.Crossref | GoogleScholarGoogle Scholar |