Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

The influence of bait and camera type on detection of a spectrum of medium-sized Australian mammals

Ross L. Goldingay https://orcid.org/0000-0002-6684-9299 A *
+ Author Affiliations
- Author Affiliations

A Faculty of Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.

* Correspondence to: ross.goldingay@scu.edu.au

Handling Editor: Karl Vernes

Australian Mammalogy 46, AM23020 https://doi.org/10.1071/AM23020
Submitted: 11 May 2023  Accepted: 15 January 2024  Published: 2 February 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

Camera-trapping programs are most effective when informed by knowledge of the influence of components of the camera setup such as bait and camera type. I investigated the influence of two baits and three camera types on detection of eight species of medium-sized mammals across a 10-month survey. The spotted-tailed quoll (Dasyurus maculatus) was the only species that favoured a meat bait (sardines) over a peanut-butter bait. The long-nosed potoroo (Potorous tridactylus), Parma wallaby (Notamacropus parma), long-nosed bandicoot (Perameles nasuta) and swamp wallaby (Wallabia bicolor) favoured the peanut-butter bait over the meat bait. The northern brown bandicoot (Isoodon macrourus), mountain brushtail possum (Trichosurus caninus) and feral cat (Felis catus) showed no preference. Camera type influenced weekly detection in three species. The long-nosed bandicoot had lower detection at a Reconyx white-flash (WF) camera compared with a Reconyx infra-red flash (IR) and a Swift wide-angle (Sw) camera. The mountain brushtail possum had higher detection at a Sw compared with WF and IR. The feral cat had higher detection at a WF compared with IR and Sw. The findings have implications in relation to selection of bait and camera type that can lead to more effective monitoring, whether a program is directed at one of these species or the spectrum of species.

Keywords: Australian mammals, Barool National Park, Gibraltar Range National Park, long-nosed potoroo, multi-method occupancy, Parma wallaby, Reconyx camera, spotted-tailed quoll, Swift camera, Washpool National Park.

References

Ahumada, J. A., Hurtado, J., and Lizcano, D. (2013). Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS One 8(9), e73707.
| Crossref | Google Scholar | PubMed |

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike’s information criterion. Journal of Wildlife Management 74, 1175-1178.
| Crossref | Google Scholar |

Austin, C., Tuft, K., Ramp, D., Cremona, T., and Webb, J. K. (2017). Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus). Australian Mammalogy 39, 72-77.
| Crossref | Google Scholar |

Barcelos, D. C., Alvarenga, G. C., Gräbin, D. M., Baccaro, F., and Ramalho, E. E. (2023). Divergent effects of lure on multi-species camera-trap detections and quality of photos. Journal for Nature Conservation 71, 126317.
| Crossref | Google Scholar |

Bardales, R., Hyde, M., Gallo, J., and Boron, V. (2023). National parks and conservation concessions: a comparison between mammal populations in two types of tropical protected areas in Ucayali, Peru. Journal of Tropical Ecology 39, e3.
| Crossref | Google Scholar |

Bohnett, E., Faryabi, S. P., Lewison, R., An, L., Bian, X., Rajabi, A. M., Jahed, N., Rooyesh, H., Mills, E., Ramos, S., Mesnildrey, N., Santoro Perez, C. M., Taylor, J., Terentyev, V., and Ostrowski, S. (2023). Human expertise combined with artificial intelligence improves performance of snow leopard camera trap studies. Global Ecology and Conservation 41, e02350.
| Crossref | Google Scholar |

Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261-304.
| Google Scholar |

Buyaskas, M., Evans, B. E., and Mortelliti, A. (2020). Assessing the effectiveness of attractants to increase camera trap detections of North American mammals. Mammalian Biology 100, 91-100.
| Crossref | Google Scholar |

Carthew, S. M. (1993). An assessment of pollinator visitation to Banksia spinulosa. Australian Journal of Ecology 18, 257-268.
| Crossref | Google Scholar |

Claridge, A. W., Paull, D. J., and Cunningham, R. B. (2016). Oils ain’t oils: can truffle-infused food additives improve detection of rare and cryptic mycophagous mammals? Australian Mammalogy 38, 12-20.
| Crossref | Google Scholar |

Cordier, C. P., Ehlers Smith, D. A., Ehlers Smith, Y., and Downs, C. T. (2022). Camera trap research in Africa: A systematic review to show trends in wildlife monitoring and its value as a research tool. Global Ecology and Conservation 40, e02326.
| Crossref | Google Scholar |

Courtney Jones, S. K., and Mikac, K. M. (2019). Quantifying daily activity patterns of the spotted-tailed quoll (Dasyurus maculatus) using camera trap data from a stronghold population in south- eastern New South Wales. Australian Mammalogy 41, 283-286.
| Crossref | Google Scholar |

Cutler, T. L., and Swann, D. E. (1999). Using remote photography in wildlife ecology: a review. Wildlife Society Bulletin 27, 571-581.
| Google Scholar |

Diete, R. L., Meek, P. D., Dixon, K. M., Dickman, C. R., and Leung, L. K.-P. (2015). Best bait for your buck: bait preference for camera trapping north Australian mammals. Australian Journal of Zoology 63, 376-382.
| Crossref | Google Scholar |

Driessen, M. M., Jarman, P. J., Troy, S., and Callander, S. (2017). Animal detections vary among commonly used camera trap models. Wildlife Research 44, 291-297.
| Crossref | Google Scholar |

Fancourt, B. A., Sweaney, M., and Fletcher, D. B. (2018). More haste, less speed: pilot study suggests camera trap detection zone could be more important than trigger speed to maximise species detections. Australian Mammalogy 40, 118-121.
| Crossref | Google Scholar |

Glen, A. S., and Dickman, C. R. (2006). Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. Journal of Zoology 268, 347-354.
| Crossref | Google Scholar |

Glen, A. S., Cockburn, S., Nichols, M., Ekanayake, J., and Warburton, B. (2013). Optimising camera traps for monitoring small mammals. PLoS One 8(6), e67940.
| Crossref | Google Scholar | PubMed |

Goldingay, R. L., Rohweder, D., Taylor, B. D., and Parkyn, J. L. (2022). Use of road underpasses by mammals and a monitor lizard in eastern Australia and consideration of the prey-trap hypothesis. Ecology and Evolution 12, e9075.
| Crossref | Google Scholar |

Gonçalves, A. L. S., de Oliveira, T. G., Arévalo-Sandi, A. R., Canto, L. V., Yabe, T., and Spironello, W. R. (2022). Composition of terrestrial mammal assemblages and their habitat use in unflooded and flooded blackwater forests in the Central Amazon. PeerJ 10, e14374.
| Crossref | Google Scholar | PubMed |

Gracanin, A., Minchinton, T. E., and Mikac, K. M. (2022). Estimating the density of small mammals using the selfie trap is an effective camera trapping method. Mammal Research 67, 467-482.
| Crossref | Google Scholar | PubMed |

Heiniger, J., and Gillespie, G. (2018). High variation in camera trap-model sensitivity for surveying mammal species in northern Australia. Wildlife Research 45, 578-585.
| Crossref | Google Scholar |

Henderson, T., Fancourt, B. A., and Ballard, G. (2022). The importance of species-specific survey designs: prey camera trap surveys significantly underestimate the detectability of endangered spotted-tailed quolls. Australian Mammalogy 44, 380-386.
| Crossref | Google Scholar |

Hohnen, R., Ashby, J., Tuft, K., and McGregor, H. (2013). Individual identification of northern quolls (Dasyurus hallucatus) using remote cameras. Australian Mammalogy 35, 131-135.
| Crossref | Google Scholar |

Holinda, D., Burgar, J. M., and Burton, A. C. (2020). Effects of scent lure on camera trap detections vary across mammalian predator and prey species. PLoS ONE 15(5), e0229055.
| Crossref | Google Scholar | PubMed |

Jansen, P. A., Ahumada, J. A., Fegraus, E., and O’Brien, T. (2014). TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In ‘Camera trapping: wildlife management and research’. (Eds P. Meek, P. Fleming, G. Ballard, P. Banks, A. Claridge, J. Sanderson, D. Swann.) pp. 263–270. (CSIRO Publishing: Melbourne.)

Jones, M. E., and Barmuta, L. A. (2000). Niche differentiation among sympatric Australian dasyurid carnivores. Journal of Mammalogy 81, 434-447.
| Crossref | Google Scholar |

Linnell, M. A., and Lesmeister, D. B. (2020). Predator–prey interactions in the canopy. Ecology and Evolution 10, 8610-8622.
| Crossref | Google Scholar | PubMed |

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255.
| Crossref | Google Scholar |

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., and Hines, J. E. (2018). ‘Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence’, 2nd edn. (Academic Press: London.)

McDonald, P. J., Griffiths, A. D., Nano, C. E. M., and Dickman, C. R. (2015). Landscape-scale factors determine occupancy of the critically endangered central rock-rat in arid Australia: The utility of camera trapping. Biological Conservation 191, 93-100.
| Crossref | Google Scholar |

McHugh, D., Goldingay, R. L., Link, J., and Letnic, M. (2019). Habitat and introduced predators influence the occupancy of small threatened macropods in subtropical Australia. Ecology and Evolution 9, 6300-6317.
| Crossref | Google Scholar | PubMed |

McLean, C. M., Vårhammar, A., and Mikac, K. M. (2015). Use of motion-activated remote cameras to detect the endangered spotted- tailed quoll (Dasyurus maculatus): results from a pilot study. Australian Mammalogy 37, 113-115.
| Crossref | Google Scholar |

McLean, W. R., Goldingay, R. L., and Westcott, D. A. (2017). Visual lures increase camera trap detection of the southern cassowary (Casuarius casuarius johnsonii). Wildlife Research 44, 230-237.
| Crossref | Google Scholar |

Meek, P. D., Ballard, G. A., and Fleming, P. J. S. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy 37, 13-22.
| Crossref | Google Scholar |

Meek, P. D., Ballard, G. A., and Falzon, G. (2016). The higher you go the less you will know: placing camera traps high to avoid theft will affect detection. Remote Sensing in Ecology and Conservation 2, 204-211.
| Crossref | Google Scholar |

Moore, J. F., Soanes, K., Balbuena, D., Beirne, C., Bowler, M., Carrasco‐Rueda, F., Cheyne, S. M., Coutant, O., Forget, P. M., Haysom, J. K., Houlihan, P. R., Olson, E. R., Lindshield, S., Martin, J., Tobler, M., Whitworth, A., and Gregory, T. (2021). The potential and practice of arboreal camera trapping. Methods in Ecology and Evolution 12, 1768-1779.
| Crossref | Google Scholar |

Moseby, K. E., Selfe, R., and Freeman, A. (2004). Attraction of auditory and olfactory lures to feral cats, red foxes, European rabbits and burrowing bettongs. Ecological Management & Restoration 5, 228-231.
| Google Scholar |

Nichols, J. D., Bailey, L. L., O’Connell Jr, A. F., Talancy, N. W., Campbell Grant, E. H., Gilbert, A. T., Annand, E. M., Husband, T. P., and Hines, J. E. (2008). Multi-scale occupancy estimation and modelling using multiple detection methods. Journal of Applied Ecology 45, 1321-1329.
| Crossref | Google Scholar |

O’Connell, A. F., Talancy, N. W., Bailey, L. L., Sauer, J. R., Cook, R., and Gilbert, A. T. (2006). Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. Journal of Wildlife Management 70, 1625-1633.
| Crossref | Google Scholar |

Paull, D. J., Claridge, A. W., and Barry, S. C. (2011). There’s no accounting for taste: bait attractants and infrared digital cameras for detecting small to medium ground-dwelling mammals. Wildlife Research 38, 188-195.
| Crossref | Google Scholar |

Read, J. L., Bengsen, A. J., Meek, P. D., and Moseby, K. E. (2015). How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia. Wildlife Research 42, 1-12.
| Crossref | Google Scholar |

Rendall, A. R., White, J. G., Cooke, R., Schneider, T., Beilharz, L., Poelsma, E., Ryeland, J., and Weston, M. A. (2021). Taking the bait: The influence of attractants and microhabitat on detections of fauna by remote-sensing cameras. 22. Ecological Management & Restoration 72-79.
| Crossref | Google Scholar |

Rowland, J., Hoskin, C. J., and Burnett, S. (2023). Camera-trapping density estimates suggest critically low population sizes for the Wet Tropics subspecies of the spotted-tailed quoll (Dasyurus maculatus gracilis). Austral Ecology 48, 399-417.
| Crossref | Google Scholar |

Salvatori, M., Oberosler, V., Rinaldi, M., Franceschini, A., Truschi, S., Pedrini, P., and Rovero, F. (2023). Crowded mountains: Long-term effects of human outdoor recreation on a community of wild mammals monitored with systematic camera trapping. Ambio 52, 1085-1097.
| Crossref | Google Scholar | PubMed |

Seebeck, J. H., Warneke, R. M., and Baxter, B. J. (1984). Diet of the bobuck, Trichosurus caninus (Ogilby) (Marsupialia: Phalangeridae) in a mountain forest in Victoria. In ‘Possums and gliders’. (Eds A. P. Smith, and I. D. Hume.) pp. 145–154. (Surrey Beatty: Chipping Norton.)

Seidlitz, A., Bryant, K. A., Armstrong, N. J., Calver, M., and Wayne, A. F. (2021). Optimising camera trap height and model increases detection and individual identification rates for a small mammal, the numbat (Myrmecobius fasciatus). Australian Mammalogy 43, 226-234.
| Crossref | Google Scholar |

Seidlitz, A., Bryant, K. A., Armstrong, N. J., and Wayne, A. F. (2022). Animal detections increase by using a wide-angle camera trap model but not by periodically repositioning camera traps within study sites. Pacific Conservation Biology 28, 25-35.
| Crossref | Google Scholar |

Stokeld, D., Frank, A. S. K., Hill, B., Choy, J. L., Mahney, T., Stevens, A., Young, S., Rangers, D., Rangers, W., and Gillespie, G. R. (2015). Multiple cameras required to reliably detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using camera traps. Wildlife Research 42, 642-649.
| Crossref | Google Scholar |

Swann, D. E., and Perkins, N. (2014). Camera trapping for animal monitoring and management: a review of applications. In ‘Camera trapping: wildlife management and research’. (Eds P. Meek, P. Fleming, G. Ballard, P. Banks, A. Claridge, J. Sanderson, and D. Swann) pp. 1–11. (CSIRO Publishing: Melbourne.)

Swan, M., Di Stefano, J., Christie, F., Steel, E., and York, A. (2014a). Detecting mammals in heterogeneous landscapes: implications for biodiversity monitoring and management. Biodiversity and Conservation 23, 343-355.
| Google Scholar |

Swan, M., Di Stefano, J., and Christie, F. (2014b). Comparing the effectiveness of two types of camera trap for surveying ground-dwelling mammals. In ‘Camera trapping: wildlife management and research’. (Eds P. Meek, P. Fleming, G. Ballard, P. Banks, A. Claridge, J. Sanderson, and D. Swann.) pp. 123–130. (CSIRO Publishing: Melbourne.)

Taggart, P. L., Peacock, D. E., and Fancourt, B. A. (2020). Camera trap flash-type does not influence the behaviour of feral cats (Felis catus). Australian Mammalogy 42, 220-222.
| Crossref | Google Scholar |

Taylor, B. D., Goldingay, R. L., and Lindsay, J. M. (2014). Horizontal or vertical? Camera trap orientations and recording modes for detecting potoroos, bandicoots and pademelons. Australian Mammalogy 36, 60-66.
| Crossref | Google Scholar |

Urlus, J., McCutcheon, C., Gilmore, D., and McMahon, J. (2014). The effect of camera trap type on the probability of detecting different size classes of Australian mammals. In ‘Camera trapping: wildlife management and research’. (Eds P. Meek, P. Fleming, G. Ballard, P. Banks, A. Claridge, J. Sanderson, D. Swann.) pp. 111–121. (CSIRO Publishing: Melbourne.)

Welbourne, D. J., Claridge, A. W., Paull, D. J., and Lambert, A. (2016). How do passive infrared triggered camera traps operate and why does it matter? Breaking down common misconceptions. Remote Sensing in Ecology and Conservation 2, 77-83.
| Crossref | Google Scholar |