Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Diet, feeding behaviour and echidna beaks: a review of functional relationships within the tachyglossids

Stewart C. Nicol
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, University of Tasmania, Hobart, Tas. 7005, Australia. Email: s.c.nicol@utas.edu.au

Australian Mammalogy 44(1) 39-50 https://doi.org/10.1071/AM20053
Submitted: 11 August 2020  Accepted: 30 January 2021   Published: 24 February 2021

Abstract

Echidnas are commonly known as ‘spiny ant-eaters’, but long-beaked echidnas (Zaglossus spp.) do not eat ants, whereas short-beaked echidnas (Tachyglossus aculeatus) eat other invertebrates as well as ants. The differences in skull morphology between short- and long-beaked echidnas are related to the differences in their diets, and I tested the hypothesis that there would be differences in beak length of short-beaked echidnas from populations with different diets. Published data on diet from echidnas from different parts of Australia show that echidnas from arid and semi-arid areas (subspecies acanthion) and Kangaroo Island (subspecies multiaculeatus) principally eat ants and termites, whereas the main dietary items of echidnas from south-eastern Australia (subspecies aculeatus) and Tasmania (subspecies setosus) are ants and scarab larvae. Using museum specimens and photographs I measured skull dimensions on echidnas from different parts of Australia: acanthion and multiaculeatus have narrower skulls and shorter beaks than aculeatus and setosus, with setosus being the only Australian subspecies where beak length exceeds cranium length. Australian short-beaked echidnas fall into two groups: aculeatus and setosus from the wetter east and south-east, which eat ant and scarab larvae, and the arid and semi-arid zone acanthion and multiaculeatus, with shorter, narrower skulls, and which eat ants and termites.

Keywords: ant eater, beak, diet, echidna, feeding behaviour, monotreme, myrmecophagy, skull, Tachyglossus, Zaglossus.


References

Asahara, M., Koizumi, M., Macrini, T. E., Hand, S. J., and Archer, M. (2016). Comparative cranial morphology in living and extinct platypuses: Feeding behavior, electroreception, and loss of teeth. Science Advances 2, e1601329.
Comparative cranial morphology in living and extinct platypuses: Feeding behavior, electroreception, and loss of teeth.Crossref | GoogleScholarGoogle Scholar | 27757425PubMed |

Ashwell, K. W., Hardman, C. D., and Musser, A. M. (2014). Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361.
Brain and behaviour of living and extinct echidnas.Crossref | GoogleScholarGoogle Scholar | 25053446PubMed |

Ashwell, K. W. S. (2008). Encephalization of Australian and New Guinean Marsupials. Brain, Behavior and Evolution 71, 181–199.
Encephalization of Australian and New Guinean Marsupials.Crossref | GoogleScholarGoogle Scholar |

Abensperg-Traun, M. A. (1988). Food preference of the echidna, Tachyglossus aculeatus (Monotremata: Tachyglossidae), in the wheatbelt of Western Australia. Australian Mammalogy 11, 117–123.

Belperio, A., and Flint, R. (1999). Geomorphology and geology. In ‘A Biological Survey of Kangaroo Island, South Australia’. (Eds A. Robinson, and D. Armstrong.) pp. 19–32. (Department for Environment, Heritage and Aboriginal Affairs, South Australia: Adelaide)

Burgin, C. J., Colella, J. P., Kahn, P. L., and Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy 99, 1–14.
How many species of mammals are there?Crossref | GoogleScholarGoogle Scholar |

Charles, C., Solé, F., Rodrigues, H. G., and Viriot, L. (2013). Under pressure? Dental adaptations to termitophagy and vermivory among mammals. Evolution 67, 1792–1804.
Under pressure? Dental adaptations to termitophagy and vermivory among mammals.Crossref | GoogleScholarGoogle Scholar | 23730770PubMed |

Davit‐Béal, T., Tucker, A. S., and Sire, J. Y. (2009). Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. Journal of Anatomy 214, 477–501.
Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations.Crossref | GoogleScholarGoogle Scholar | 19422426PubMed |

Esselstyn, J. A., Achmadi, A. S., and Rowe, K. C. (2012). Evolutionary novelty in a rat with no molars. Biology Letters 8, 990–993.
Evolutionary novelty in a rat with no molars.Crossref | GoogleScholarGoogle Scholar | 22915626PubMed |

Flannery, T. F. (1995). ‘Mammals of New Guinea.’ (Reed: Chatswood, NSW)

Frew, A., Barnett, K., Nielsen, U. N., Riegler, M., and Johnson, S. N. (2016). Below ground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia. Frontiers in Plant Science 7, 321.
Below ground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia.Crossref | GoogleScholarGoogle Scholar | 27047506PubMed |

Geoffroy Sàint-Hilaire, É. (1803). Extrait des observations anatomiques de M. Home, sur l’echidné. Bulletin des sciences par la Société philomathique de Paris 3, 125–127.

Griffiths, M. (1968). ‘Echidnas.’ (Pergamon Press: Oxford)

Griffiths, M. (1978). ‘The Biology of Monotremes.’ (Academic Press Inc.: New York)

Griffiths, M. (1989). Tachyglossidae. In ‘Fauna of Australia Volume 1B Mammalia’. (Eds D. W. Walton, and B. J. Richardson.) pp. 407–435. (Australian Government Publishing Service: Canberra)

Griffiths, M., Greenslade, P. J. M., Miller, M., and Kerle, J. A. (1990). The diet of the spiny ant-eater Tachyglossus aculeatus acanthion in tropical habitats in the Northern Territory. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 7, 79–90.

Griffiths, M., Wells, R. T., and Barrie, D. (1991). Observations on the skulls of fossil and extant echidnas (Monotremata: Tachyglossidae). Australian Mammalogy 14, 87–101.

Harrison, S. (1997). The feeding ecology of the echidna, Tachyglossus aculeatus, in the Strathbogie Ranges, north-eastern Victoria. BSc (Honours) Thesis, University of Melbourne.

Helgen, K. M., Miguez, R. P., Kohen, J., and Helgen, L. (2012). Twentieth century occurrence of the long-beaked echidna Zaglossus bruijnii in the Kimberley region of Australia. ZooKeys 255, 103–132.
Twentieth century occurrence of the long-beaked echidna Zaglossus bruijnii in the Kimberley region of Australia.Crossref | GoogleScholarGoogle Scholar |

Jenkins, F. A. (1970). Limb movements in a monotreme (Tachyglossus aculeatus): a cineradiographic analysis. Science 168, 1473–1475.
Limb movements in a monotreme (Tachyglossus aculeatus): a cineradiographic analysis.Crossref | GoogleScholarGoogle Scholar | 5445940PubMed |

Jones, D., and Eggleton, P. (2011). Global biogeography of termites: a compilation of sources. In ‘Biology of Termites: A Modern Synthesis’. (Eds D. E. Bignell, Y. Roisin, and N. Lo.) pp. 477–498. (Springer: Dordrecht, The Netherlands)

Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 292, 679–686.
Sea level change through the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 11326090PubMed |

Lawes, J. C. (2009). The behavioural ecology of echidnas at an arid ephemeral creek in north-western New South Wales. BSc (Honours) Thesis, University of New South Wales.

McQuillan, P. B., Ireson, J. E., Hill, L., and Young, C. (2007). ‘Tasmanian pasture pests: Identification, biology and control.’ (Department of Primary Industry and Fisheries: Hobart)

Morrow, G. E., and Nicol, S. C. (2012). Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus). Australian Journal of Zoology 60, 289.
Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Murray, P. (1978a). A Pleistocene spiny anteater from Tasmania (Monotremata: Tachyglossidae, Zaglossus). Papers and Proceedings of the Royal Society of Tasmania 112, 39–68.

Murray, P. F. (1978b). Late Cenozoic monotreme anteaters. Australian Zoologist 20, 29–55.

Murray, P. F. (1981). A unique jaw mechanism in the echidna, Tachyglossus aculeatus (Monotremata). Australian Journal of Zoology 29, 1–5.
A unique jaw mechanism in the echidna, Tachyglossus aculeatus (Monotremata).Crossref | GoogleScholarGoogle Scholar |

Musser, A. M. (2006). Furry Egg-Layers: Monotreme Relationships and Radiations. In ‘Evolution and Biogeography of Australasian Vertebrates’. (Eds J. R. Merrick, M. Archer, G M. Hickey, and M. S. Y. Lee.) pp. 523–550. (Auscipub Pty Ltd: Sydney)

Nicol, S. C. (2015). Family Tachyglossidae (Echidnas) In ‘Handbook of Mammals of the World. Vol. 5. Monotremes and Marsupials’. (Eds D. E. Wilson, and R. A. Mittermeier.) pp. 34–57. (Lynx Edicions: Barcelona)

Nicol, S. C. (2017). Energy Homeostasis in Monotremes. Frontiers in Neuroscience 11, 1–17.
Energy Homeostasis in Monotremes.Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C., Morrow, G. E., and Harris, R. L. (2019). Energetics meets sexual conflict: the phenology of hibernation in Tasmanian echidnas (Tachyglossus aculeatus setosus). Functional Ecology 33, 2150–2160.
Energetics meets sexual conflict: the phenology of hibernation in Tasmanian echidnas (Tachyglossus aculeatus setosus).Crossref | GoogleScholarGoogle Scholar |

Nowak, R. M. (1999). ‘Walker’s Mammals of the World’, 6th edn. (Johns Hopkins University Press: Baltimore)

Olsen, A. M. (2017). Feeding ecology is the primary driver of beak shape diversification in waterfowl. Functional Ecology 31, 1985–1995.
Feeding ecology is the primary driver of beak shape diversification in waterfowl.Crossref | GoogleScholarGoogle Scholar |

Opiang, M. D. (2009). Home ranges, movement, and den use in long-beaked echidnas, Zaglossus bartoni, from Papua New Guinea. Journal of Mammalogy 90, 340–346.
Home ranges, movement, and den use in long-beaked echidnas, Zaglossus bartoni, from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Peel, M. C., Finlayson, B. L., and McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Eart System Sciences 11, 1633–1644.
Updated world map of the Köppen-Geiger climate classification.Crossref | GoogleScholarGoogle Scholar |

Pettigrew, J. D. (1999). Electroreception in monotremes. The Journal of Experimental Biology 202, 1447–54.
| 10210685PubMed |

Pledge, N. S. (1980). Giant echidnas in South Australia. South Australian Naturalist 55, 27–30.

Pledge, N. S. (1990). The upper fossil fauna of the Henschke fossil cave, Naracoorte, South Australia. Memoirs of the Queensland Museum 28, 247–262.

Ramsay, E. P. (1878a). Contributions to the zoology of New Guinea. Part 1. Mammals. Proceedings of the Linnean Society of New South Wales 3, 241–245.
Contributions to the zoology of New Guinea. Part 1. Mammals.Crossref | GoogleScholarGoogle Scholar |

Ramsay, E. P. (1878b). Note of a species of echidna (Tachyglossus), from Port Moresby, New Guinea. The Proceedings of the Linnean Society of New South Wales II, 31–33.

Reiss, K. Z. (2001). Using phylogenies to study convergence: the case of the ant-eating mammals. American Zoologist 41, 507–525.
Using phylogenies to study convergence: the case of the ant-eating mammals.Crossref | GoogleScholarGoogle Scholar |

Robinson, A., and Armstrong, D. (1999). ‘A biological survey of Kangaroo Island, South Australia.’ (Biological Survey and Research Division, Department for Environment and Heritage and Aboriginal Affairs: Adelaide, SA)

Rowe, C. (2007). Vegetation change following mid-Holocene marine transgression of the Torres Strait shelf: a record from the island of Mua, northern Australia. The Holocene 17, 927–937.
Vegetation change following mid-Holocene marine transgression of the Torres Strait shelf: a record from the island of Mua, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Simon, R. V. (2013). Cranial osteology of the long-beaked echidna, and the definition, diagnosis and origin of Monotremata and its major subclades. MSc thesis, University of Texas, Austin

Smith, A. P., Wellham, G. S., and Green, S. W. (1989). Seasonal foraging activity and microhabitat selection by echidnas (Tachyglossus aculeatus) on the New England Tablelands. Australian Journal of Ecology 14, 457–468.
Seasonal foraging activity and microhabitat selection by echidnas (Tachyglossus aculeatus) on the New England Tablelands.Crossref | GoogleScholarGoogle Scholar |

Spencer, C., and Richards, K. (2009). Observations on the diet and feeding habits of the short-beaked echidna (Tachyglossus aculeatus) in Tasmania. The Tasmanian Naturalist 131, 36–41.

Sprent, J. A., and Nicol, S. C. (2012). The influence of habitat on home range size of the short beaked echidna. Australian Journal of Zoology 60, 46–53.
The influence of habitat on home range size of the short beaked echidna.Crossref | GoogleScholarGoogle Scholar |

Sprent, J. A., and Nicol, S. C. (2016). Diet of the short-beaked echidna (Tachyglossus aculeatus) in the Tasmanian Southern Midlands. Australian Mammalogy 38, 188–194.
Diet of the short-beaked echidna (Tachyglossus aculeatus) in the Tasmanian Southern Midlands.Crossref | GoogleScholarGoogle Scholar |

Summerell, A., Frankham, G., Gunn, P., and Johnson, R. (2019). DNA based method for determining source country of the short beaked echidna (Tachyglossus aculeatus) in the illegal wildlife trade. Forensic science international 295, 46–53.
DNA based method for determining source country of the short beaked echidna (Tachyglossus aculeatus) in the illegal wildlife trade.Crossref | GoogleScholarGoogle Scholar | 30554021PubMed |

Thomas, O. (1885). Notes on the characters of the different races of echidna. Proceedings of the Zoological Society of London 53, 329–339.
Notes on the characters of the different races of echidna.Crossref | GoogleScholarGoogle Scholar |

Thomas, O. (1906). On mammals collected in south-west Australia for Mr WE Balston. Proceedings of the Zoological Society of London 76, 468–478.

Woodroffe, C., Kennedy, D., Hopley, D., Rasmussen, C., and Smithers, S. (2000). Holocene reef growth in Torres Strait. Marine Geology 170, 331–346.
Holocene reef growth in Torres Strait.Crossref | GoogleScholarGoogle Scholar |

Wroe, S., Field, J. H., Archer, M., Grayson, D. K., Price, G. J., Louys, J., Faith, J. T., Webb, G. E., Davidson, I., and Mooney, S. D. (2013). Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proceedings of the National Academy of Sciences 110, 8777–8781.
Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea).Crossref | GoogleScholarGoogle Scholar |

Yom-Tov, Y., and Nix, H. (1986). Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society 29, 245–262.
Climatological correlates for body size of five species of Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Zhou, Y., Shearwin-Whyatt, L., Li, J., Song, Z., Hayakawa, T., Stevens, D., Fenelon, J. C., Peel, E., Cheng, Y., Pajpach, F., Bradley, N., Suzuki, H., Nikaido, M., Damas, J., Daish, T., Perry, T., Zhu, Z., Geng, Y., Rhie, A., Sims, Y., Wood, J., Haase, B., Mountcastle, J., Fedrigo, O., Li, Q., Yang, H., Wang, J., Johnston, S. D., Phillippy, A. M., Howe, K., Jarvis, E. D., Ryder, O. A., Kaessmann, H., Donnelly, P., Korlach, J., Lewin, H. A., Graves, J., Belov, K., Renfree, M. B., Grutzner, F., Zhou, Q., and Zhang, G. (2021). Platypus and echidna genomes reveal mammalian biology and evolution. Nature , .
Platypus and echidna genomes reveal mammalian biology and evolution.Crossref | GoogleScholarGoogle Scholar | 33469213PubMed |