Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Molecular characterisation of Interleukin-2 in two Australian marsupials (the tammar wallaby, Notamacropus eugenii, and the Tasmanian devil, Sarcophilus harrisii) facilitates the development of marsupial-specific immunological reagents

Lauren J. Young A B E , Jessica Gurr C , Katrina Morris C D , Sabine Flenady A and Katherine Belov C
+ Author Affiliations
- Author Affiliations

A School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia.

B School of Science and Health, Western Sydney University, Penrith, NSW 2750, Australia.

C School of Life and Environmental Sciences, Faculty of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia.

D The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.

E Corresponding author. Email: ljmbyoung@gmail.com

Australian Mammalogy 41(1) 39-48 https://doi.org/10.1071/AM17027
Submitted: 23 April 2017  Accepted: 2 November 2017   Published: 25 January 2018

Abstract

Interleukin-2 (IL-2) is an important regulator of cellular immunity in mammals. For many years, our inability to identify the expression of this cytokine in marsupials hindered our capacity to progress studies in metatherian immunology. Here, we report the use of molecular techniques to characterise the IL-2 gene for the tammar wallaby (Notamacropus eugenii) and the Tasmanian devil (Sarcophilus harrisii), which allowed the prediction of the structure and probable functions of the IL-2 proteins of these species. Deduced marsupial IL-2 proteins show considerable sequence identity to each other and to common brushtail possum (Trichosurus vulpecula) IL-2 (≥65%) but shared only 35% (tammar wallaby) and 32% (Tasmanian devil) identity with human IL-2. This difference means that reagents used to study IL-2 in human and other eutherians are unlikely to cross-react with marsupials. As a key step in furthering our ability to study cellular immune responses in marsupials and, more specifically, the susceptibility of macropodoid marsupials to intracellular pathogens, a polyclonal antibody was designed for the detection and future investigation of tammar wallaby IL-2 protein expression. The molecular data and polyclonal antibody described herein will support our development of gene probes and immunological reagents that will aid studies of infection and disease in marsupials.

Additional keywords: Dasyuridae, immunology, Macropodidae, marsupial.


References

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (Eds.) (2002). ‘Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology.’ 5th edn. (Wiley: New Jersey.)

Bender, H. S., Marshall Graves, J. A., and Deakin, J. E. (2014). Pathogenesis and molecular biology of a transmissible tumor in the Tasmanian devil. Annual Review of Animal Biosciences 2, 165–187.
Pathogenesis and molecular biology of a transmissible tumor in the Tasmanian devil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Shurg%3D&md5=4b0e2648b8f98c15cbb9143fed853a78CAS |

Betts, M. J., and Russell, R. B. (2003). Amino acid properties and consequences of substitutions. In ‘Bioinformatics for Geneticists’. (Eds M. R. Barnes, and I. C. Gray.) pp. 289–316. (John Wiley & Sons, Ltd: New Jersey.)

Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294, 1351–1362.
Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFaqsrg%3D&md5=5f2ff64a4f80ef9f47dcf11ad5ebd1ccCAS |

Boyman, O., and Sprent, J. (2012). The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews. Immunology 12, 180–190.
| 1:CAS:528:DC%2BC38XitlKnsrg%3D&md5=7d0b67d6f61ee0a219c1c61be820f6cfCAS |

Brown, G. K., Tovar, C., Cooray, A. A., Kreiss, A., Darby, J., Murphy, J. M., Corcoran, L. M., Bettiol, S. S., Lyons, A. B., and Woods, G. M. (2016). Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells. Immunology and Cell Biology 94, 673–679.
Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosFWju7g%3D&md5=d3853b256ccdf73d2518070f9a2f9354CAS |

Buddle, B. M., and Young, L. J. (2000). Immunobiology of mycobacterial infections in marsupials. Developmental and Comparative Immunology 24, 517–529.
Immunobiology of mycobacterial infections in marsupials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kslWgsw%3D%3D&md5=37c0977ce8cd96394a6ec85d96fffe5cCAS |

Collins, R. A., Tayton, H. K., Gelder, K. I., Britton, P., and Oldham, G. (1994). Cloning and expression of bovine and porcine interleukin-2 in baculovirus and analysis of species cross-reactivity. Veterinary Immunology and Immunopathology 40, 313–324.
Cloning and expression of bovine and porcine interleukin-2 in baculovirus and analysis of species cross-reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhsl2nsA%3D%3D&md5=2ceaea9b5d4e85a93b8ff75db47eace4CAS |

Crispín, J. C., and Tsokos, G. C. (2009). Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmunity Reviews 8, 190–195.
Transcriptional regulation of IL-2 in health and autoimmunity.Crossref | GoogleScholarGoogle Scholar |

Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer 4, 11–22.
Cytokines in cancer pathogenesis and cancer therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Wjtg%3D%3D&md5=23253a537252c57a3137cf26c22b8fefCAS |

Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., and Wilson, A. (2011). Geneious v 7. Available from: http://www.geneious.com

Fenwick, B. W., Schore, C. E., and Osburn, B. I. (1988). Human recombinant interleukin-2 (125) induced in vitro proliferation of equine, caprine, ovine, canine and feline peripheral- blood lymphocytes. Comparative Immunology, Microbiology and Infectious Diseases 11, 51–60.
Human recombinant interleukin-2 (125) induced in vitro proliferation of equine, caprine, ovine, canine and feline peripheral- blood lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3lsVSqtg%3D%3D&md5=3d7d81f77ade3df973fedb6a74244591CAS |

Flicek, P., Ridwan Amode, M., Barrell, D., Beal, K., Billis, K., Brent, S., et al (2014). Ensembl 2014. Nucleic Acids Research 42, D749–D755.
Ensembl 2014.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosleq&md5=b5a3d00d8c1888d1154591fcf78bbd6cCAS |

Gaffen, S. L., and Liu, K. D. (2004). Overview of interleukin-2 function, production and clinical applications. Cytokine 28, 109–123.
Overview of interleukin-2 function, production and clinical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1ais7c%3D&md5=38930e60e7bd35d98a23f3a90db6a619CAS |

Harrison, G. A., and Wedlock, D. N. (2000). Marsupial cytokines structure, function and evolution. Developmental and Comparative Immunology 24, 473–484.
Marsupial cytokines structure, function and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Cku7k%3D&md5=cf6111f951da7a4cb298c1ea9daef447CAS |

Iwata, H., Yamamoto, M., Hasegawa, A., Kurata, K., and Inoue, T. (2000). Expression of porcine interleukin-2 in Escherichia coli. The Journal of Veterinary Medical Science 62, 1101–1104.
Expression of porcine interleukin-2 in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFyhsbg%3D&md5=30fe230ead99b7fedbc177ecc956b556CAS |

Julenius, K., Mǿlgaard, A., Gupta, R., and Brunak, S. (2005). Prediction, conservation analysis and structural characterisation of mammalian nucin-type O-glycosylation sites. Glycobiology 15, 153–164.
Prediction, conservation analysis and structural characterisation of mammalian nucin-type O-glycosylation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVSksg%3D%3D&md5=6a8bed6a53dc37624e8e762641fdb5bbCAS |

Kelley, L. A., and Sternberg, M. J. E. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371.
Protein structure prediction on the Web: a case study using the Phyre server.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2itbs%3D&md5=4f5b5060faac29e1695339bb0d1c4270CAS |

Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M. K., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., and Bryant, S. H. (2013). CDD: Conserved Domains and protein three-dimensional structure. Nucleic Acids Research 41, D384–D352.

McCallum, H., and Jones, M. (2012). Infectious cancers in wildlife. In ‘Emerging Infectious Diseases and Conservation Medicine’. (Eds A. A. Aguirre, R. Ostfeld, and P. Daszak.) pp. 270–283. (Oxford University Press: New York.)

Nilsson, M. A., Churakov, G., Sommer, M., Tran, N. V., Zemann, A., Brosius, J., and Schmitz, J. (2010). Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biology 8, e1000436.
Tracking marsupial evolution using archaic genomic retroposon insertions.Crossref | GoogleScholarGoogle Scholar |

O’Brien, C. R., Handasyde, K. A., Hiblle, J., Lavender, C. J., Legione, A. R., McCowen, C., Globan, M., Mitchell, A. T., McCracken, H. E., Johnson, P. D. R., and Fyfe, J. A. M. (2014). Clinical, microbiological and pathological findings of Mycobacterium ulcerans infection in three Australian possum species. PLoS Neglected Tropical Diseases 8, e2666.
Clinical, microbiological and pathological findings of Mycobacterium ulcerans infection in three Australian possum species.Crossref | GoogleScholarGoogle Scholar |

Orme, I. M., and Ordway, D. J. (2014). Host response to nontuberculous mycobacterial infections of current clinical importance. Infection and Immunity 82, 3516–3522.
Host response to nontuberculous mycobacterial infections of current clinical importance.Crossref | GoogleScholarGoogle Scholar |

Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785–786.
SignalP 4.0: discriminating signal peptides from transmembrane regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CrtrbL&md5=b4c1dcd0548a67951cbd3f99a9fb2da9CAS |

Phelan, J. R. (1996). Atypical mycobacterial infections in captive long-footed potoroos (Potorous longipes). In ‘Proceedings of the American Association of Zoo Veterinarians Annual Conference, Puerto Vallarta, Mexico’. pp. 443–445

Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5, 725–738.
I-TASSER: a unified platform for automated protein structure and function prediction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVahs74%3D&md5=b4bccb7016bf2e3944079a655e1d4b05CAS |

Roy, A., Yang, J., and Zhang, Y. (2012). COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research 40, W471–W477.
COFACTOR: an accurate comparative algorithm for structure-based protein function annotation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCrtL0%3D&md5=e8b32318594f997928ee2a4dfea8f8efCAS |

Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A., and Wilson, I. A. (2006). Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proceedings of the National Academy of Sciences of the United States of America 103, 2788–2793.
Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2rtL4%3D&md5=5fad9da59a79019af7a9f72d638b5dd2CAS |

Stone, W. H., Brunn, D. A., Foster, E. B., Manis, G. S., Hoffman, E. S., Saphire, D. G., VandeBerg, J. L., and Infante, A. J. (1998). Absence of a significant mixed lymphocyte reaction in a marsupial Monodelphis domestica. Laboratory Animal Science 48, 184–189.
| 1:STN:280:DyaK1M7ovFyrsw%3D%3D&md5=0c177039a0a6132eef2a4188ad01726dCAS |

West, W. H., Tauer, K. W., Yannelli, J. R., Marshall, G. D., Orr, D. W., Thurman, G. B., and Oldham, R. K. (1987). Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. New England Journal of Medicine 316, 898–905.
Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ksVGitQ%3D%3D&md5=bde8dc55444bd653a481042fb475b7daCAS |

Wingender, E., Kel, A. E., Kel, O. V., Karas, H., Heinemeyer, T., Dietze, P., Knüppel, R., Romaschenko, A. G., and Kolchanov, N. A. (1997). TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation. Nucleic Acids Research 25, 265–268.
TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpvFOjsQ%3D%3D&md5=50cf6061594473abf761e21832ef8e16CAS |

Wong, E. S. W., Young, L. J., Papenfuss, A. T., and Belov, K. (2006). In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Research 2, 4.
In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals.Crossref | GoogleScholarGoogle Scholar |

Young, L. (2011). Expressed sequence identification and characterisation of the cDNA for Interleukin-4 from the mitogen-stimulated lymphoid tissue of a marsupial, Macropus eugenii. Veterinary Immunology and Immunopathology 140, 335–340.
Expressed sequence identification and characterisation of the cDNA for Interleukin-4 from the mitogen-stimulated lymphoid tissue of a marsupial, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wlur8%3D&md5=7b328f1e1f31767d32742a932079e911CAS |

Young, L. J., McFarlane, R., Slender, A. L., and Deane, E. M. (2003). Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteria-affected specimens of the rufous hare-wallaby (Lagorchestes hirsutus). Journal of Anatomy 202, 315–325.
Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteria-affected specimens of the rufous hare-wallaby (Lagorchestes hirsutus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ptlOgtw%3D%3D&md5=4c26e754d315fdb81e89e27873c3b2d0CAS |

Young, L. J., Cross, M. L., Duckworth, J. A., Flenady, S., and Belov, K. (2012). Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula. Developmental and Comparative Immunology 36, 236–240.
Molecular identification of interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOksb7L&md5=e7f8573e2e642112ef28e830c5ad4af8CAS |

Zelus, D., Robinson-Rechavi, M., Delacre, M., Auriault, C., and Laudet, V. (2000). Fast evolution of interleukin-2 in mammals and positive selection in ruminants. Journal of Molecular Evolution 51, 234–244.
Fast evolution of interleukin-2 in mammals and positive selection in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslGltL0%3D&md5=d69e18bc7e0a7a2e9fc75aaf5bb8f4d4CAS |

Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40.
I-TASSER server for protein 3D structure prediction.Crossref | GoogleScholarGoogle Scholar |

Zhu, J., Yamane, H., and Paul, W. E. (2010). Differentiation of effector CD4 T cell populations. Annual Review of Immunology 28, 445–489.
Differentiation of effector CD4 T cell populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSmsL4%3D&md5=183277c21aa98cbc031032d01863c2ebCAS |