Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Breaking down scats: degradation of DNA from greater bilby (Macrotis lagotis) faecal pellets

Fiona M. Carpenter A B and Martin A. Dziminski A
+ Author Affiliations
- Author Affiliations

A Science and Conservation Division, Department of Parks and Wildlife, Woodvale Wildlife Research Centre, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

B Corresponding author. Email: fiona.carpenter@dpaw.wa.gov.au

Australian Mammalogy 39(2) 197-204 https://doi.org/10.1071/AM16030
Submitted: 4 July 2016  Accepted: 4 October 2016   Published: 21 November 2016

Abstract

Isolating DNA from scats (faeces) of threatened species is a valuable, non-invasive method for identifying individuals. To establish whether genotyping of greater bilby (Macrotis lagotis) individuals from faecal pellets collected in the field can be useful for population monitoring, an understanding of the DNA degradation rates is necessary. To determine the relationship between time and degradation of bilby faecal DNA, and assess whether a two-step elution process during extraction results in better-quality DNA, faecal pellets were collected from captive individuals, maintained under seminatural conditions, then harvested at known periods. DNA was amplified from faecal pellets with a 99% success rate and error rates of less than 5% up to 14 days after deposition. The amplification rate decreases, and the rate of allelic dropout increases with time, but DNA can still be amplified at rates above 60% and error rates below 15% at 90–180 days. We found that a second elution step was unnecessary, with more DNA amplified over a longer period using the first eluate. Viable DNA exists on bilby faecal pellets for a long period after deposition, which is useful for obtaining genetic samples for population monitoring programs and studies on population genetics.

Additional keywords: arid-dwelling marsupial, barcoding, elusive, fauna conservation, genetic sampling, individual identification.


References

Abbott, I. (2001). The bilby, Macrotis lagotis (Marsupialia: Peramelidae) in south-western Australia: original range limits, subsequent decline and presumed regional extinction. Records of the Western Australian Museum 20, 271–305.

Abbott, I. (2008). Historical perspectives of the ecology of some conspicuous vertebrate species in south-west Western Australia. Conservation Science Western Australia Journal 6, 1–214.

Adams, J. R., and Waits, L. P. (2006). An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conservation Genetics 8, 123–131.
An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area.Crossref | GoogleScholarGoogle Scholar |

Alacs, E., Alpers, D., de Tores, P. J., Dillon, M., and Spencer, P. B. S. (2003). Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces. Wildlife Research 30, 41–47.
Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces.Crossref | GoogleScholarGoogle Scholar |

Archie, E. A., Moss, C. J., and Alberts, S. C. (2003). Characterization of tetranucleotide microsatellite loci in the African savannah elephant (Loxodonta africana africana). Molecular Ecology Notes 3, 244–246.
Characterization of tetranucleotide microsatellite loci in the African savannah elephant (Loxodonta africana africana).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt12htro%3D&md5=2d3e4edf3d4b191362a29df641da51d5CAS |

Baldwin, H. J., Hoggard, S. J., Snoyman, S. T., Stow, A. J., and Brown, C. (2010). Non-invasive genetic sampling of faecal material and hair from the grey-headed flying-fox (Pteropus poliocephalus). Australian Mammalogy 32, 56–61.
Non-invasive genetic sampling of faecal material and hair from the grey-headed flying-fox (Pteropus poliocephalus).Crossref | GoogleScholarGoogle Scholar |

Bonin, A., Bellemain, E., Eidesen, P. B., Pompanon, F., Brochmann, C., and Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology 13, 3261–3273.
How to track and assess genotyping errors in population genetics studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurvP&md5=68dd49cb52c2474c9b3710889dd27bbaCAS |

Bradley, K., Lees, C., Lundie-Jenkins, G., Copley, P., Paltridge, R., Dziminski, M., Southgate, R., Nally, S., and Kemp, L. (2015). 2015 Greater Bilby Conservation Summit and Interim Conservation Plan: an initiative of the Save the Bilby Fund. IUCN SSC Conservation Breeding Specialist Group, Apple Valley, MN.

Brinkman, T. J., Person, D. K., Schwartz, M. K., Pilgrim, K. L., Colson, K. E., and Hundertmark, K. J. (2010a). Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conservation Genetics Resources 2, 115–118.
Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets.Crossref | GoogleScholarGoogle Scholar |

Brinkman, T. J., Schwartz, M. K., Person, D. K., Pilgrim, K. L., and Hundertmark, K. J. (2010b). Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conservation Genetics 11, 1547–1552.
Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Sisbw%3D&md5=0e574028101ab49b83314c11cfd3bdd1CAS |

Broquet, T., and Petit, E. (2004). Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology 13, 3601–3608.
Quantifying genotyping errors in noninvasive population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurbN&md5=0a86119ee18bdf263a3105e65eddb7a2CAS |

Burbidge, A. A., Johnson, K. A., Fuller, P. J., and Southgate, R. I. (1988). Aboriginal knowledge of the mammals of the central deserts of Australia. Australian Wildlife Research 15, 9–39.
Aboriginal knowledge of the mammals of the central deserts of Australia.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2015). Australian Government, Bureau of Meteorology. Available at: http://www.bom.gov.au/ [accessed 1 December 2015].

Burrows, N., Dunlop, J., and Burrows, S. (2012). Searching for signs of bilby (Macrotis lagotis) activity in central Western Australia using observers on horseback. Journal of the Royal Society of Western Australia 95, 167–170.

Cramer, V. A., Dziminski, M. A., Southgate, R., Carpenter, F. M., Ellis, R. J., and van Leeuwen, S. (2016). A conceptual framework for habitat use and research priorities for the greater bilby (Macrotis lagotis) in the north of Western Australia. Australian Mammalogy , .
A conceptual framework for habitat use and research priorities for the greater bilby (Macrotis lagotis) in the north of Western Australia.Crossref | GoogleScholarGoogle Scholar |

DeMay, S. M., Becker, P. A., Eidson, C. A., Rachlow, J. L., Johnson, T. R., and Waits, L. P. (2013). Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit. Molecular Ecology Resources 13, 654–662.
Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVaqt7Y%3D&md5=36e1423ce0015338f168c9d29bbd3128CAS |

Deuter, R., Pietsch, S., Hertel, S., and Müller, O. (1995). A method for preparation of fecal DNA suitable for PCR. Nucleic Acids Research 23, 3800–3801.
A method for preparation of fecal DNA suitable for PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslynt7k%3D&md5=1494cd7834cbbe31c2ac13079c55358eCAS |

Ernest, H. B., Penedo, M. C. T., May, B. P., Syvanen, M., and Boyce, W. M. (2000). Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Molecular Ecology 9, 433–441.
Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFahsbg%3D&md5=e38e03026900db069c6e873d7835d433CAS |

Friend, J. A. (1990). Status of bandicoots in Western Australia. In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 73–84. (Surrey Beatty: Sydney.)

Gibson, L. A. (2001). Seasonal changes in the diet, food availability and food preference of the greater bilby (Macrotis lagotis) in south-western Queensland. Wildlife Research 28, 121–134.
Seasonal changes in the diet, food availability and food preference of the greater bilby (Macrotis lagotis) in south-western Queensland.Crossref | GoogleScholarGoogle Scholar |

Gibson, L. A., and Hume, I. D. (2000a). Digestive performance and digesta passage in the omnivorous greater bilby, Macrotis lagotis (Marsupialia: Peramelidae). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 170, 457–467.
Digestive performance and digesta passage in the omnivorous greater bilby, Macrotis lagotis (Marsupialia: Peramelidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzgt12msg%3D%3D&md5=9cd1eb589cd7ad4e7e47862c06332a59CAS |

Gibson, L. A., and Hume, I. D. (2000b). Seasonal field energetics and water influx rates of the greater bilby (Macrotis lagotis). Australian Journal of Zoology 48, 225–239.
Seasonal field energetics and water influx rates of the greater bilby (Macrotis lagotis).Crossref | GoogleScholarGoogle Scholar |

Gibson, L., and Hume, I. (2004). Aspects of the ecophysiology and the dietary strategy of the greater bilby Macrotis lagotis: a review. Australian Mammalogy 26, 179–183.
Aspects of the ecophysiology and the dietary strategy of the greater bilby Macrotis lagotis: a review.Crossref | GoogleScholarGoogle Scholar |

Gibson, L. A., Hume, I. D., and McRae, P. D. (2002). Ecophysiology and nutritional niche of the bilby (Macrotis lagotis), an omnivorous marsupial from inland Australia: a review. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 133, 843–847.
Ecophysiology and nutritional niche of the bilby (Macrotis lagotis), an omnivorous marsupial from inland Australia: a review.Crossref | GoogleScholarGoogle Scholar |

Gordon, G., Hall, L. S., and Atherton, R. G. (1990). Status of bandicoots in Queensland. In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 37–42. (Surrey Beatty: Sydney.)

Johnson, K. A., and Southgate, R. I. (1990). Present and former status of bandicoots in the Northern Territory. In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 85–92. (Surrey Beatty: Sydney.)

Karmacharya, D. B., Thapa, K., Shrestha, R., Dhakal, M., and Janecka, J. E. (2011). Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4, 516.
Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal.Crossref | GoogleScholarGoogle Scholar |

Lollback, G. W., Mebberson, R., Evans, N., Shuker, J. D., and Hero, J.-M. (2015). Estimating the abundance of the bilby (Macrotis lagotis): a vulnerable, uncommon, nocturnal marsupial. Australian Mammalogy 37, 75–85.
Estimating the abundance of the bilby (Macrotis lagotis): a vulnerable, uncommon, nocturnal marsupial.Crossref | GoogleScholarGoogle Scholar |

Lucchini, V., Fabbri, E., Marucco, F., Ricci, S., Boitani, L., and Randi, E. (2002). Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Molecular Ecology 11, 857–868.
Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVKrs7s%3D&md5=d36d6835e4ec70042af30c7ea739803bCAS |

Marlow, B. J. (1958). A survey of the marsupials of New South Wales. CSIRO Wildlife Research 3, 71–114.
A survey of the marsupials of New South Wales.Crossref | GoogleScholarGoogle Scholar |

McGregor, H. M., and Moseby, K. E. (2014). Improved technique for capturing the greater bilby (Macrotis lagotis) using burrow cage traps. Australian Mammalogy 36, 259–260.
Improved technique for capturing the greater bilby (Macrotis lagotis) using burrow cage traps.Crossref | GoogleScholarGoogle Scholar |

Miller, E. J., Eldridge, M. D. B., Thomas, N., Marlow, N., and Herbert, C. A. (2010). The genetic mating system, male reproductive success and lack of selection on male traits in the greater bilby. Australian Journal of Zoology 58, 113–120.
The genetic mating system, male reproductive success and lack of selection on male traits in the greater bilby.Crossref | GoogleScholarGoogle Scholar |

Morin, P. A., Chambers, K. E., Boesch, C., and Vigilant, L. (2001). Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology 10, 1835–1844.
Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVynsLg%3D&md5=45ccdb24e8732fab4272769cc09c355bCAS |

Moritz, C., Heideman, A., Geffen, E., and Mcrae, P. (1997). Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline. Molecular Ecology 6, 925–936.
Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVGlu7Y%3D&md5=28984cb8ca86af8f04a12014a1482776CAS |

Murphy, M. A., Waits, L. P., and Kendall, K. C. (2000). Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildlife Society Bulletin (1973–2006) 28, 951–957.

Murphy, M. A., Kendall, K. C., Robinson, A., and Waits, L. P. (2007). The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conservation Genetics 8, 1219–1224.
The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification.Crossref | GoogleScholarGoogle Scholar |

Nsubuga, A. M., Robbins, M. M., Roeder, A. D., Morin, P. A., Boesch, C., and Vigilant, L. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology 13, 2089–2094.
Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeksrc%3D&md5=0014b3f1036ba6d86d47bacd7bfac6a1CAS |

Panasci, M., Ballard, W. B., Breck, S., Rodriguez, D., Densmore, L. D., Wester, D. B., and Baker, R. J. (2011). Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success. Journal of Wildlife Management 75, 1616–1624.
Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P. (2004). Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Research 31, 485–493.
Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurnJ&md5=94b2b310c4e2409718678848c18127faCAS |

Piggott, M. P., and Taylor, A. C. (2003a). Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Australian Journal of Zoology 51, 341–355.
Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWqtLo%3D&md5=4e6193564bda9bb45af700307a215643CAS |

Piggott, M. P., and Taylor, A. C. (2003b). Remote collection of animal DNA and its application in conservation management and understanding the population biology of rare and cryptic species. Wildlife Research 30, 1–13.
Remote collection of animal DNA and its application in conservation management and understanding the population biology of rare and cryptic species.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P., Banks, S. C., Stone, N., Banffy, C., and Taylor, A. C. (2006). Estimating population size of endangered brush-tailed rock-wallaby (Petrogale penicillata) colonies using faecal DNA. Molecular Ecology 15, 81–91.
Estimating population size of endangered brush-tailed rock-wallaby (Petrogale penicillata) colonies using faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt74%3D&md5=00e27dcd7acbadf8e23b6ebcca9b6a58CAS |

Puechmaille, S. J., and Petit, E. J. (2007). Empirical evaluation of non-invasive capture–mark–recapture estimation of population size based on a single sampling session: non-invasive capture–mark–recapture. Journal of Applied Ecology 44, 843–852.
Empirical evaluation of non-invasive capture–mark–recapture estimation of population size based on a single sampling session: non-invasive capture–mark–recapture.Crossref | GoogleScholarGoogle Scholar |

QIAGEN (2006). DNeasy® Blood & Tissue Handbook. Available at: https://www.qiagen.com/au/resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50&lang=en [accessed 17 March 2016].

QIAGEN (2014). QIAamp DNA Micro Handbook. Available at: https://www.qiagen.com/au/resources/resourcedetail?id=085e6418-1ec0-45f2-89eb-62705f86f963&lang=en [accessed 26 April 2016].

Ramón-Laca, A., Soriano, L., Gleeson, D., and Godoy, J. A. (2015). A simple and effective method for obtaining mammal DNA from faeces. Wildlife Biology 21, 195–203.
A simple and effective method for obtaining mammal DNA from faeces.Crossref | GoogleScholarGoogle Scholar |

Rodgers, T. W., and Janečka, J. E. (2013). Applications and techniques for non-invasive faecal genetics research in felid conservation. European Journal of Wildlife Research 59, 1–16.
Applications and techniques for non-invasive faecal genetics research in felid conservation.Crossref | GoogleScholarGoogle Scholar |

Roeder, A. D., Archer, F. I., Poinar, H. N., and Morin, P. A. (2004). A novel method for collection and preservation of faeces for genetic studies. Molecular Ecology Notes 4, 761–764.
A novel method for collection and preservation of faeces for genetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGgsA%3D%3D&md5=88785bd5e858c532204c69697e25c3ddCAS |

Ruibal, M., Peakall, R., Claridge, A., and Firestone, K. (2009). Field-based evaluation of scat DNA methods to estimate population abundance of the spotted-tailed quoll (Dasyurus maculatus), a rare Australian marsupial. Wildlife Research 36, 721–736.
Field-based evaluation of scat DNA methods to estimate population abundance of the spotted-tailed quoll (Dasyurus maculatus), a rare Australian marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKgtbjE&md5=354ef93cccb223be09aa0b3960e5047dCAS |

Santini, A., Lucchini, V., Fabbri, E., and Randi, E. (2007). Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Molecular Ecology Notes 7, 955–961.
Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12ltA%3D%3D&md5=83290d90a70b8644a893d1c92cdbf735CAS |

Schwartz, M. K., Luikart, G., and Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 22, 25–33.
Genetic monitoring as a promising tool for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Shaw, K. J., Thain, L., Docker, P. T., Dyer, C. E., Greenman, J., Greenway, G. M., and Haswell, S. J. (2009). The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths. FAAS 652, 231–233.
The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htbvP&md5=f5b9286bc705134c29ba055a3dae1397CAS |

Smith, S., and Hughes, J. (2008). Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville. Conservation Genetics 9, 547–557.
Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ks74%3D&md5=7bff93693046566d45e1605258d83a27CAS |

Smith, S., McRae, P., and Hughes, J. (2009). Faecal DNA analysis enables genetic monitoring of the species recovery program for an arid-dwelling marsupial. Australian Journal of Zoology 57, 139–148.
Faecal DNA analysis enables genetic monitoring of the species recovery program for an arid-dwelling marsupial.Crossref | GoogleScholarGoogle Scholar |

Southgate, R. I. (1990). Distribution and abundance of the greater bilby Macrotis lagotis Reid (Marsupialia: Peramelidae). In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 303–309. (Surrey Beatty: Sydney.)

Southgate, R. (2005). Age classes of the greater bilby (Macrotis lagotis) based on track and faecal pellet size. Wildlife Research 32, 625–630.
Age classes of the greater bilby (Macrotis lagotis) based on track and faecal pellet size.Crossref | GoogleScholarGoogle Scholar |

Southgate, R., and Adams, M. (1994). Genetic variation in the greater bilby (Macrotis lagotis). Pacific Conservation Biology 1, 46–52.
Genetic variation in the greater bilby (Macrotis lagotis).Crossref | GoogleScholarGoogle Scholar |

Southgate, R., and Carthew, S. M. (2006). Diet of the bilby (Macrotis lagotis) in relation to substrate, fire and rainfall characteristics in the Tanami Desert. Wildlife Research 33, 507–519.
Diet of the bilby (Macrotis lagotis) in relation to substrate, fire and rainfall characteristics in the Tanami Desert.Crossref | GoogleScholarGoogle Scholar |

Southgate, R., and Moseby, K. (2008). Track-based monitoring for the deserts and rangelands of Australia. Unpublished report for the Threatened Species Network at WWF-Australia. Envisage Environmental Services Ecological Horizons, South Australia.

Southgate, R., Mcrae, P., and Atherton, R. (1995). Trapping techniques and a pen design for the greater bilby Macrotis lagotis. Australian Mammalogy 18, 101–104.

Southgate, R., Paltridge, R., Masters, P., and Nano, T. (2005). An evaluation of transect, plot and aerial survey techniques to monitor the spatial pattern and status of the bilby (Macrotis lagotis) in the Tanami Desert. Wildlife Research 32, 43–52.
An evaluation of transect, plot and aerial survey techniques to monitor the spatial pattern and status of the bilby (Macrotis lagotis) in the Tanami Desert.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research 24, 3189–3194.
Reliable genotyping of samples with very low DNA quantities using PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslyrtLs%3D&md5=ebc219f1c10ae5bf8f09e44507248dc2CAS |

Vynne, C., Baker, M. R., Breuer, Z. K., and Wasser, S. K. (2012). Factors influencing degradation of DNA and hormones in maned wolf scat. Animal Conservation 15, 184–194.
Factors influencing degradation of DNA and hormones in maned wolf scat.Crossref | GoogleScholarGoogle Scholar |

Waits, L. P., and Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. Journal of Wildlife Management 69, 1419–1433.
Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection.Crossref | GoogleScholarGoogle Scholar |

Walker, F. M., Horsup, A., and Taylor, A. C. (2009). Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats. Molecular Ecology Resources 9, 720–724.
Leader of the pack: faecal pellet deposition order impacts PCR amplification in wombats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ggtb0%3D&md5=52667fdd03e9bcd8f23a93e464de20d6CAS |

Wedrowicz, F., Karsa, M., Mosse, J., and Hogan, F. E. (2013). Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet. Molecular Ecology Resources 13, 634–641.
Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVaqtbw%3D&md5=1e224d929d15b2274d77e6932c84ab69CAS |

Woodruff, S. P., Johnson, T. R., and Waits, L. P. (2015). Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark–recapture analysis of Sonoran pronghorn. Molecular Ecology Resources 15, 843–854.
Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark–recapture analysis of Sonoran pronghorn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVGnu7rN&md5=bb4c65a49df4e151eaab87755c8dd48cCAS |

Zar, J. H. (1999). ‘Biostatistical Analysis.’ 4th edn. (Prentice Hall: Upper Saddle River, NJ.)