Preliminary genomic survey and sequence analysis of the complement system in non-eutherian mammals
Oselyne T. W. Ong A , Lauren J. Young A and Julie M. Old A BA Water and Wildlife Ecology, School of Science and Health, Hawkesbury, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.
B Corresponding author. Email: j.old@uws.edu.au
Australian Mammalogy 38(1) 80-90 https://doi.org/10.1071/AM15036
Submitted: 23 December 2014 Accepted: 29 October 2015 Published: 15 January 2016
Abstract
The complement system is a major mediator of the vertebrate immune system, which functions in both innate and specific immune responses. It comprises more than 30 proteins working to remove foreign cells by way of anaphylatoxins, opsonins or the membrane attack complex. Over the last few years, whole genome sequences of non-eutherian mammals (marsupials and a monotreme), the gray short-tailed opossum (Monodelphis domestica), tammar wallaby (Macropus eugenii), Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus) and platypus (Ornithorhynchus anatinus), have become publicly available. Using these sequences, we have identified an array of complement components in non-eutherians using online search tools and algorithms. Of 57 complement and complement-related genes investigated, we identified 46 in the gray short-tailed opossum genome, 27 in the tammar wallaby genome, 44 in the Tasmanian devil genome, 47 in the koala genome and 40 in the platypus genome. The results of this study confirm the presence of key complement components in the immune repertoire of non-eutherian mammals and provide a platform for future studies on immune protection in young marsupials.
Additional keywords: immunity, marsupial, metatherian, monotreme.
References
Abarrategui-Garrido, C., Martínez-Barricarte, R., López-Trascasa, M., De Córdoba, S. R., and Sánchez-Corral, P. (2009). Characterization of complement factor H–related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114, 4261–4271.| Characterization of complement factor H–related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGku7jE&md5=a410ec0d90f155fb212250938754f928CAS | 19745068PubMed |
Abbott, K. L., Lim, J.-M., Wells, L., Benigno, B. B., McDonald, J. F., and Pierce, M. (2010). Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 10, 470–481.
| Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGhsLk%3D&md5=f01bf4f0f6d6232272f8286bfc3cfd41CAS | 19953551PubMed |
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
| Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=4d6cad734918abb19a3c6605e2334506CAS | 2231712PubMed |
Ambatipudi, K., Joss, J., Raftery, M., and Deane, E. (2008). A proteomic approach to analysis of antimicrobial activity in marsupial pouch secretions. Developmental and Comparative Immunology 32, 108–120.
| A proteomic approach to analysis of antimicrobial activity in marsupial pouch secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyksbjK&md5=e587e4fec8e91a07f7383509e2fe60dcCAS | 17582494PubMed |
Arlaud, G. J., and Thielens, N. M. (1993). Human complement serine proteases C1r and C1s and their proenzymes. Methods in Enzymology 223, 61–82.
| Human complement serine proteases C1r and C1s and their proenzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlWnt7o%3D&md5=d8d17b5076ca5feb6dbc6df91401e6b9CAS | 8271968PubMed |
Armstrong, J., and Ferguson, M. (1995). Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica. Developmental Biology 169, 242–260.
| Ontogeny of the skin and the transition from scar-free to scarring phenotype during wound healing in the pouch young of a marsupial, Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1Ois70%3D&md5=01a2b89ff43d5f6ecb1938afbf7d2619CAS | 7750642PubMed |
Baker, M., Indiviglio, S., Nyberg, A., Rosenberg, G., Lindblad-Toh, K., Miller, R., and Papenfuss, A. (2007). Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American gray short-tailed opossum. BMC Genomics 8, 50.
| Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American gray short-tailed opossum.Crossref | GoogleScholarGoogle Scholar | 17298671PubMed |
Bao, L., Haas, M., and Quigg, R. J. (2010). Complement factor H deficiency accelerates development of lupus nephritis. Journal of the American Society of Nephrology 22, 1–11.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2011). GenBank. Nucleic Acids Research 39, D32–D37.
| GenBank.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivF2mt7s%3D&md5=8a1b7643a7cb700f3dc6354b5d197f9dCAS | 21071399PubMed |
Blom, A. M., Kask, L., and Dahlbäck, B. (2001). Structural requirements for the complement regulatory activities of C4BP. The Journal of Biological Chemistry 276, 27136–27144.
| Structural requirements for the complement regulatory activities of C4BP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsV2jtbg%3D&md5=f723165ddbf6155d70298ada1abfef64CAS | 11369776PubMed |
Borregaard, N., Elsbach, P., Ganz, T., Garred, P., and Svejgaard, A. (2000). Innate immunity: from plants to humans. Immunology Today 21, 68–70.
| Innate immunity: from plants to humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpsFGkug%3D%3D&md5=923a68d26e18f04f8bee199e7dee9256CAS | 10652463PubMed |
Borthwick, C., Young, L., and Old, J. M. (2014). The development of the immune tissues in marsupial pouch young. Journal of Morphology 275, 822–839.
| The development of the immune tissues in marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 24469962PubMed |
Circolo, A., Pierce, G., Katz, Y., and Strunk, R. (1990). Anti-inflammatory effects of polypeptide growth factors. Platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor inhibit the cytokine-induced expression of the alternative complement pathway activator factor B in human fibroblasts. The Journal of Biological Chemistry 265, 5066–5071.
| 1:CAS:528:DyaK3cXitFWnsb4%3D&md5=3b1ca9b14d3124202c6c588404fc4ae1CAS | 1690734PubMed |
Deakin, J. E. (2012). Marsupial genome sequences: providing insight into evolution and disease. Scientifica 2012, 543176.
| Marsupial genome sequences: providing insight into evolution and disease.Crossref | GoogleScholarGoogle Scholar | 24278712PubMed |
DeFranco, A. L., Locksley, R. M., and Robertson, M. (2007). ‘Immunity: The Immune Response in Infectious and Inflammatory Disease.’ (Sinauer Associates Incorporated: Sunderland, MA.)
Edwards, M. J., and Deakin, J. E. (2013). The marsupial pouch: implications for reproductive success and mammalian evolution. Australian Journal of Zoology 61, 41–47.
| The marsupial pouch: implications for reproductive success and mammalian evolution.Crossref | GoogleScholarGoogle Scholar |
Edwards, Y. J. K., and Perkins, S. J. (1995). The protein fold of the von Willebrand factor type A domain is predicted to be similar to the open twisted beta-sheet flanked by alpha-helices found in human ras-p21. FEBS Letters 358, 283–286.
| The protein fold of the von Willebrand factor type A domain is predicted to be similar to the open twisted beta-sheet flanked by alpha-helices found in human ras-p21.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFams7k%3D&md5=0cbe8ac7e68524efc84e9b5db65aab79CAS |
Edwards, Y. J. K., and Perkins, S. J. (1996). Assessment of protein fold predictions from sequence information: the predicted α/β doubly wound fold of the von Willebrand factor type A domain is similar to its crystal structure. Journal of Molecular Biology 260, 277–285.
| Assessment of protein fold predictions from sequence information: the predicted α/β doubly wound fold of the von Willebrand factor type A domain is similar to its crystal structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktl2ltbc%3D&md5=93f1bacf7b74df480168c8c58ddbf369CAS |
Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., and Fairley, S. (2013). Ensembl 2013. Nucleic Acids Research 41, D48–D55.
| Ensembl 2013.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ktrbO&md5=7967996d0aeb7914a342b570085b66eeCAS | 23203987PubMed |
Flight, M. H. (2011). Evolution: three major steps to a mammalian brain. Nature Reviews. Neuroscience 12, 371–372.
| Evolution: three major steps to a mammalian brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2qsL8%3D&md5=ddf8d008b690d2ea173a8e42a3c810c9CAS | 21654703PubMed |
Goldberger, G., Bruns, G., Rits, M., Edge, M., and Kwiatkowski, D. (1987). Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4. The Journal of Biological Chemistry 262, 10065–10071.
| 1:CAS:528:DyaL2sXmtlSgtbw%3D&md5=9bd6508b3761da79401c62b13d3f9b6bCAS | 2956252PubMed |
Grant, T. (1995). ‘The Platypus: A Unique Mammal.’ (UNSW Press: Sydney.)
Harrison, G. A., and Wedlock, D. N. (2000). Marsupial cytokines: structure, function and evolution. Developmental and Comparative Immunology 24, 473–484.
| Marsupial cytokines: structure, function and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Cku7k%3D&md5=8453a54645de0a9c98cfe3141ee589ccCAS | 10785272PubMed |
Harrison, G. A., Broughton, M. J., Young, L. J., Cooper, D. W., and Deane, E. M. (1999). Conservation of 3ʹ untranslated region elements in tammar wallaby (Macropus eugenii) TNF-α mRNA. Immunogenetics 49, 464–467.
| Conservation of 3ʹ untranslated region elements in tammar wallaby (Macropus eugenii) TNF-α mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVKmtrY%3D&md5=931ed7d9782e77a800b5d28c97e2ba2fCAS | 10199924PubMed |
Heider, T. N., Lindsay, J., Wang, C., O’Neill, R. J., and Pask, A. J. (2011). Enhancing genome assemblies by integrating non-sequence based data. BMC Proceedings 5, S7.
| Enhancing genome assemblies by integrating non-sequence based data.Crossref | GoogleScholarGoogle Scholar | 21554765PubMed |
Hobbs, M., Pavasonic, A., King, A. G., Prentis, P. J., Eldridge, M. D. B., Chen, Z., Colgan, D. J., Polkinghorne, A., Wilkins, M. R., Flanagan, C., Gillett, A., Hanger, J., Johnson, R. N., and Timms, P. (2014). A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity. BMC Genomics 15, 786.
| A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity.Crossref | GoogleScholarGoogle Scholar | 25214207PubMed |
Holland, N., and Jackson, S. M. (2002). Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). Journal of Zoology 256, 279–288.
| Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus).Crossref | GoogleScholarGoogle Scholar |
Holmes, R. S., and Rout, U. K. (2011). Comparative studies of vertebrate beta integrin genes and proteins: ancient genes in vertebrate evolution. Biomolecules 1, 3–31.
| Comparative studies of vertebrate beta integrin genes and proteins: ancient genes in vertebrate evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Chsrk%3D&md5=a84204435570e96b124b39c04c16d6c3CAS | 24970121PubMed |
Hopper, K., and McKenzie, H. (1974). Comparative studies of α-lactalbumin and lysozyme: echidna lysozyme. Molecular and Cellular Biochemistry 3, 93–108.
| Comparative studies of α-lactalbumin and lysozyme: echidna lysozyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksF2lsbY%3D&md5=570e9d26d6857811835f7634a974ee8bCAS | 4208938PubMed |
Hourcade, D., Garcia, A. D., Post, T. W., Taillon-Miller, P., Holers, V. M., Wagner, L. M., Bora, N. S., and Atkinson, J. P. (1992). Analysis of the human regulators of complement activation (RCA) gene cluster with yeast artificial chromosomes (YACs). Genomics 12, 289–300.
| Analysis of the human regulators of complement activation (RCA) gene cluster with yeast artificial chromosomes (YACs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVyru7g%3D&md5=1a1b004c635b238f26fa53063f2570e1CAS | 1740338PubMed |
Huang, Y., Qiao, F., Abagyan, R., Hazard, S., and Tomlinson, S. (2006). Defining the CD59–C9 binding interaction. The Journal of Biological Chemistry 281, 27398–27404.
| Defining the CD59–C9 binding interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlKmt7k%3D&md5=14d85705b816db204d370c7c47650301CAS | 16844690PubMed |
Hunt, L. T., and Barker, W. C. (1987). von Willebrand factor shares a distinctive cysteine-rich domain with thrombospondin and procollagen. Biochemical and Biophysical Research Communications 144, 876–882.
| von Willebrand factor shares a distinctive cysteine-rich domain with thrombospondin and procollagen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFCku70%3D&md5=9c1e8403b950f8d38011e0f98afda645CAS | 3495268PubMed |
Janeway, C. A., Travers, P., Walport, M., and Shlomchik, M. J. (2001). ‘Immunobiology: The Immune System in Health and Disease.’ 5th edn. (Garland Science: New York.)
Johnson, R. N., Hobbs, M., Eldridge, M. D. B., King, A. G., Colgan, D. J., Wilkins, M. R., Chen, Z., Prentis, P. J., Pavasovic, A., Polkinghorne, A., and Timms, P. (2014). The koala genome corsortium. Technical Reports of the Australian Museum 24, 91–92.
| The koala genome corsortium.Crossref | GoogleScholarGoogle Scholar |
Joss, J., Molloy, M., Hinds, L., and Deane, E. (2007). Proteomic analysis of early lactation milk of the tammar wallaby (Macropus eugenii). Comparative Biochemistry and Physiology 2, 150–164.
| 20483289PubMed |
Joss, J. L., Molloy, M. P., Hinds, L., and Deane, E. (2009). A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Developmental and Comparative Immunology 33, 152–161.
| A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWrsbnP&md5=9e19fc6d8aaff83aefde5fcfa1fbb4e5CAS | 18778730PubMed |
Kelley, J. M., Edberg, J. C., and Kimberly, R. P. (2010). Pathways: strategies for susceptibility genes in SLE. Autoimmunity Reviews 9, 473–476.
| Pathways: strategies for susceptibility genes in SLE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1egsLbM&md5=a863095cad60a6591d91101d362f16a4CAS | 20144911PubMed |
Kent, W. J. (2002). BLAT – The BLAST-like alignment tool. Genome Research 12, 656–664.
| BLAT – The BLAST-like alignment tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVemtLw%3D&md5=c2d6056cab153d2e5a0f7952ee6364c3CAS | 11932250PubMed |
Kishore, U., and Reid, K. (1999). Modular organization of proteins containing C1q-like globular domain. Immunopharmacology 42, 15–21.
| Modular organization of proteins containing C1q-like globular domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Sitbk%3D&md5=5cec2fb80a49c8f2ce9ee1af24d94d1bCAS | 10408361PubMed |
Kishore, U., and Reid, K. B. M. (2000). C1q: structure, function, and receptors. Immunopharmacology 49, 159–170.
| C1q: structure, function, and receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFShu7s%3D&md5=d32dff6e2d9fbbb99e129623732872a3CAS | 10904115PubMed |
Kishore, U., Gaboriaud, C., Waters, P., Shrive, A. K., Greenhough, T. J., Reid, K. B. M., Sim, R. B., and Arlaud, G. J. (2004). C1q and tumor necrosis factor superfamily: modularity and versatility. Trends in Immunology 25, 551–561.
| C1q and tumor necrosis factor superfamily: modularity and versatility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyku70%3D&md5=c153af79313faa77c025d367b57da565CAS | 15364058PubMed |
Klos, A., Tenner, A. J., Johswich, K.-O., Ager, R. R., Reis, E. S., and Kohl, J. (2009). The role of the anaphylatoxins in health and disease. Molecular Immunology 46, 2753–2766.
| The role of the anaphylatoxins in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFGhsro%3D&md5=93ccbe3743bfbd85fd0827982f144115CAS | 19477527PubMed |
Koppenheffer, T. L., Spong, K. D., and Falvo, H. M. (1998). The complement system of the marsupial Monodelphis domestica. Developmental and Comparative Immunology 22, 231–237.
| The complement system of the marsupial Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaitrw%3D&md5=a2eddd9252e82f3a42498d93637dbc85CAS | 9639092PubMed |
Kusewitt, D., Applegate, L., and Ley, R. (1991). Ultraviolet radiation-induced skin tumors in a South American opossum (Monodelphis domestica). Veterinary Pathology 28, 55–65.
| Ultraviolet radiation-induced skin tumors in a South American opossum (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3gsFKqsQ%3D%3D&md5=6a47258d400855d3a807314a377bfba7CAS | 2017828PubMed |
Kuy, S., Kelly, V. C., Smit, A. M., Palmer, D. J., and Cooper, G. J. (2007). Proteomic analysis of whey and casein proteins in early milk from the marsupial, Trichosurus vulpecula, the common brushtail possum. Comparative Biochemistry and Physiology 2, 112–120.
| 20483284PubMed |
Leslie, R. G. Q., and Nielsen, C. H. (2004). The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes. Immunology 111, 86–90.
| The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyrug%3D%3D&md5=c27326e9924e5e9bd5cad1c1a7ad5a3bCAS |
Luo, Z.-X., Yuan, C.-X., Meng, Q.-J., and Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445.
| A Jurassic eutherian mammal and divergence of marsupials and placentals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnu7jO&md5=c7ac2b10926b5ff28362a22524e09790CAS | 21866158PubMed |
Lynch, D. M., Ashman, R. B., Kay, P. H., and Papadimitriou, J. M. (1993). Genetic, structural, and functional studies of a C3-like protein in the marsupial Setonix brachyurus. Experimental and Clinical Immunogenetics 10, 195–201.
| 1:CAS:528:DyaK2cXis1Ors78%3D&md5=4bf514923cc87af664646febf4e507c0CAS | 8136176PubMed |
Lynn, D. J., and Bradley, D. G. (2007). Discovery of α-defensins in basal mammals. Developmental and Comparative Immunology 31, 963–967.
| Discovery of α-defensins in basal mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yhu7c%3D&md5=0c3fcd77f86998d081be10da8d3472edCAS | 17367857PubMed |
Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., Duke, S., Garber, M., Gentles, A. J., Goodstadt, L., Heger, A., Jurka, J., Kamal, M., Mauceli, E., Searle, S. M. J., Sharpe, T., Baker, M. L., Batzer, M. A., Benos, P. V., Belov, K., Clamp, M., Cook, A., Cuff, J., Das, R., Davidow, L., Deakin, J. E., Fazzari, M. J., Glass, J. L., Grabherr, M., Greally, J. M., Gu, W., Hore, T. A., Huttley, G. A., Kleber, M., Jirtle, R. L., Koina, E., Lee, J. T., Mahony, S., Marra, M. A., Miller, R. D., Nicholls, R. D., Oda, M., Papenfuss, A. T., Parra, Z. E., Pollock, D. D., Ray, D. A., Schein, J. E., Speed, T. P., Thompson, K., VandeBerg, J. L., Wade, C. M., Walker, J. A., Waters, P. D., Webber, C., Weidman, J. R., Xie, X., Zody, M. C., Graves, J. A. M., Ponting, C. P., Breen, M., Samollow, P. B., Lander, E. S., and Lindblad-Toh, K. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177.
| Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrsLw%3D&md5=d52b641baaecf8241f1ef0abfccb2c4eCAS | 17495919PubMed |
Mollnes, T. E., Jokiranta, T. S., Truedsson, L., Nilsson, B., Rodriguez de Cordoba, S., and Kirschfink, M. (2007). Complement analysis in the 21st century. Molecular Immunology 44, 3838–3849.
| Complement analysis in the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2htr8%3D&md5=c3c0a892bd1097dd815ce69c3d1ebfedCAS | 17768101PubMed |
Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z., Alexandrov, L. B., Bauer, M. J., Fu, B., Hims, M., Ding, Z., Ivakhno, S., Stewart, C., Ng, B. L., Wong, W., Aken, B., White, S., Alsop, A., Becq, J., Bignell, G. R., Cheetham, R. K., Cheng, W., Connor, T. R., Cox, A. J., Feng, Z. P., Gu, Y., Grocock, R. J., Harris, S. R., Khrebtukova, I., Kingsbury, Z., Kowarsky, M., Kreiss, A., Luo, S., Marshall, J., McBride, D. J., Murray, L., Pearse, A. M., Raine, K., Rasolonjatovo, I., Shaw, R., Tedder, P., Tregidgo, C., Vilella, A. J., Wedge, D. C., Woods, G. M., Gormley, N., Humphray, S., Schroth, G., Smith, G., Hall, K., Searle, S. M., Carter, N. P., Papenfuss, A. T., Futreal, P. A., Campbell, P. J., Yang, F., Bentley, D. R., Evers, D. J., and Stratton, M. R. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
| Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2qsLs%3D&md5=3316277448e982b31bb93e5820445597CAS | 22341448PubMed |
Nolan, K. F., Kaluz, S., Reid, K., Dierich, M. P., and Schwaeble, W. (1991). Molecular cloning of the cDNA coding for properdin, a positive regulator of the alternative pathway of human complement. European Journal of Immunology 21, 771–776.
| Molecular cloning of the cDNA coding for properdin, a positive regulator of the alternative pathway of human complement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Gjsbc%3D&md5=4ac90a398b26fbef7f1a76164eeaac5dCAS | 2009915PubMed |
Nonaka, M., and Kimura, A. (2006). Genomic view of the evolution of the complement system. Immunogenetics 58, 701–713.
| Genomic view of the evolution of the complement system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVGqtb8%3D&md5=a3fe543518b6ba1ee9f853057abfacd0CAS | 16896831PubMed |
Old, J. M., and Deane, E. M. (2000). Development of the immune system and immunological protection in marsupial pouch young. Developmental and Comparative Immunology 24, 445–454.
| Development of the immune system and immunological protection in marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kslWhtw%3D%3D&md5=02a9180f93d5688ef27e6c71ec599a3aCAS | 10785270PubMed |
Ong, O., Young, L. J., and Old, J. M. (2015). Detection of an active complement system in red-tailed phascogales (Phascogale calura). Comparative Clinical Pathology 24, 1527–1534.
| Detection of an active complement system in red-tailed phascogales (Phascogale calura).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntlCksr8%3D&md5=5fa4b91454c461c2ed4c283db04f8be4CAS |
Prater, C. A., Plotkin, J., Jaye, D., and Frazier, W. A. (1991). The properdin-like type I repeats of human thrombospondin contain a cell attachment site. The Journal of Cell Biology 112, 1031–1040.
| The properdin-like type I repeats of human thrombospondin contain a cell attachment site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnvFensg%3D%3D&md5=df66fef0d372fbb700524de1e8a502eeCAS | 1999454PubMed |
Reid, K., and Day, A. J. (1989). Structure–function relationships of the complement components. Immunology Today 10, 177–180.
| Structure–function relationships of the complement components.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzit1Kktw%3D%3D&md5=04e52681e95c1477da1dafbfc6de47d5CAS | 2751824PubMed |
Renfree, M. B., Hore, T. A., Shaw, G., Graves, J. A. M., and Pask, A. J. (2009). Evolution of genomic imprinting: insights from marsupials and monotremes. Annual Review of Genomics and Human Genetics 10, 241–262.
| Evolution of genomic imprinting: insights from marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12qsrvL&md5=c5829c5cc453b3d9a29c022c5cef9c6cCAS | 19630559PubMed |
Renfree, M., Papenfuss, A., Deakin, J., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P., Pharo, E., Shaw, G., Wong, E., Lefevre, C., Nicholas, K., Kuroki, Y., Wakefield, M., Zenger, K., Wang, C., Ferguson-Smith, M., Nicholas, F., Hickford, D., Yu, H., Short, K., Siddle, H., Frankenberg, S., Chew, K., Menzies, B., Stringer, J., Suzuki, S., Hore, T., and Delbridge, M. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology 12, R81.
| Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar | 21854559PubMed |
Rens, W., O’Brien, P. C. M., Yang, F., Solanky, N., Perelman, P., Graphodatsky, A. S., Ferguson, M. W. J., Svartman, M., De Leo, A. A., Graves, J. A. M., and Ferguson-Smith, M. A. (2001). Karyotype relationships between distantly related marsupials from South America and Australia. Chromosome Research 9, 301–308.
| Karyotype relationships between distantly related marsupials from South America and Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFCitbk%3D&md5=170bbbb445bf72985fb1ac4edea18e1bCAS | 11419794PubMed |
Rodriguez de Córdoba, S., Esparza-Gordillo, J., Goicoechea de Jorge, E., Lopez-Trascasa, M., and Sanchez-Corral, P. (2004). The human complement factor H: functional roles, genetic variations and disease associations. Molecular Immunology 41, 355–367.
| The human complement factor H: functional roles, genetic variations and disease associations.Crossref | GoogleScholarGoogle Scholar | 15163532PubMed |
Sarma, J. V., and Ward, P. A. (2011). The complement system. Cell and Tissue Research 343, 227–235.
| The complement system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOlsQ%3D%3D&md5=8ff931a91a74a004d14c48a8d4ee785fCAS | 20838815PubMed |
Scharfstein, J., Ferreira, A., Gigli, I., and Nussenzweig, V. (1978). Human C4b-binding protein, isolation and characterization. The Journal of Experimental Medicine 148, 207–222.
| Human C4b-binding protein, isolation and characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlt1CktLg%3D&md5=70060304a37c79df5295e71fd955dc43CAS | 670886PubMed |
Sontheimer, R. D., Racila, E., and Racila, D. M. (2005). C1q: its functions within the innate and adaptive immune responses and its role in lupus autoimmunity. The Journal of Investigative Dermatology 125, 14–23.
| C1q: its functions within the innate and adaptive immune responses and its role in lupus autoimmunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVyku70%3D&md5=b85c2e1671cc691225b2fd82ba0aa5b5CAS | 15982298PubMed |
Stenflo, J., Stenberg, Y., and Muranyi, A. (2000). Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochimica et Biophysica Acta 1477, 51.
| Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFGktL4%3D&md5=65830f47c7ab112983920377bd945967CAS | 10708848PubMed |
Takahashi, M., Endo, Y., Fujita, T., and Matsushita, M. (1999). A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. International Immunology 11, 859–863.
| A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Oltbg%3D&md5=9e0cf9f057cabb588669d8b0d3aa8e07CAS | 10330290PubMed |
Taylor, P., Botto, M., and Walport, M. (1998). The complement system. Current Biology 8, R259–R261.
| The complement system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFSitbs%3D&md5=a2563d32b693a1bd4136de3d21660e94CAS | 9550710PubMed |
Teahan, C. G., McKenzie, H. A., and Griffiths, M. (1991). Some monotreme milk “whey” and blood proteins. Comparative Biochemistry and Physiology 99, 99–118.
| 1:STN:280:DyaK38%2FntVSrug%3D%3D&md5=36bea836caecdd2944c5378f2de46890CAS | 1959333PubMed |
Thielens, N., Aude, C. A., Lacroix, M., Gagnon, J., and Arlaud, G. (1990). Ca2+ binding properties and Ca2 (+)-dependent interactions of the isolated NH2-terminal alpha fragments of human complement proteases C1-r and C1-s. The Journal of Biological Chemistry 265, 14469–14475.
| 1:CAS:528:DyaK3cXlsFSguro%3D&md5=ad3f9a3ac8974e1e1e07ae97c2b30770CAS | 2387866PubMed |
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
| CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=bd79e433d89386da1a3bce8c1393bd01CAS | 7984417PubMed |
Tucker, R. P. (2004). The thrombospondin type 1 repeat superfamily. The International Journal of Biochemistry & Cell Biology 36, 969–974.
| The thrombospondin type 1 repeat superfamily.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1antro%3D&md5=8b9bd1dd07e1ebaa54f5ed628a5ab392CAS |
Tyndale-Biscoe, H. (2005). ‘Life of Marsupials.’ (CSIRO Publishing: Melbourne.)
Ueda, T., Rieu, P., Brayer, J., and Arnaout, M. A. (1994). Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD11b/CD18). Proceedings of the National Academy of Sciences of the United States of America 91, 10680–10684.
| Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD11b/CD18).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhsleltrY%3D&md5=8d0d599dca0bfc47a165b38cfffd9803CAS | 7524101PubMed |
Volanakis, J. E., and Narayana, S. V. L. (1996). Complement factor D, a novel serine protease. Protein Science 5, 553–564.
| Complement factor D, a novel serine protease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFShu7g%3D&md5=a303c225d8aaf9f91668644ada917865CAS | 8845746PubMed |
Wakefield, M. J., and Graves, J. A. (2005). Marsupials and monotremes sort genome treasures from junk. Genome Biology 6, 218.
| Marsupials and monotremes sort genome treasures from junk.Crossref | GoogleScholarGoogle Scholar | 15892878PubMed |
Warren, W. C., Hillier, L. W., Graves, J. A. M., Birney, E., Ponting, C. P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A. T., Yang, S.-P., Heger, A., Locke, D. P., Miethke, P., Waters, P. D., Veyrunes, F., Fulton, L., Fulton, B., Graves, T., Wallis, J., Puente, X. S., López-Otín, C., Ordóñez, G. R., Eichler, E. E., Chen, L., Cheng, Z., Deakin, J. E., Alsop, A., Thompson, K., Kirby, P., Papenfuss, A. T., Wakefield, M. J., Olender, T., Lancet, D., Huttley, G. A., Smit, A. F. A., Pask, A., Temple-Smith, P., Batzer, M. A., Walker, J. A., Konkel, M. K., Harris, R. S., Whittington, C. M., Wong, E. S. W., Gemmell, N. J., Buschiazzo, E., Jentzsch, I. M. V., Merkel, A., Schmitz, J., Zemann, A., Churakov, G., Kriegs, J. O., Brosius, J., Murchison, E. P., Sachidanandam, R., Smith, C., Hannon, G. J., Tsend-Ayush, E., McMillan, D., Attenborough, R., Rens, W., Ferguson-Smith, M., Lefèvre, C. M., Sharp, J. A., Nicholas, K. R., Ray, D. A., Kube, M., Reinhardt, R., Pringle, T. H., Taylor, J., Jones, R. C., Nixon, B., Dacheux, J.-L., Niwa, H., Sekita, Y., Huang, X., Stark, A., Kheradpour, P., Kellis, M., Flicek, P., Chen, Y., Webber, C., Hardison, R., Nelson, J., Hallsworth-Pepin, K., Delehaunty, K., Markovic, C., Minx, P., Feng, Y., Kremitzki, C., Mitreva, M., Glasscock, J., Wylie, T., Wohldmann, P., Thiru, P., Nhan, M. N., Pohl, C. S., Smith, S. M., Hou, S., Renfree, M. B., Mardis, E. R., and Wilson, R. K. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
| Genome analysis of the platypus reveals unique signatures of evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msLs%3D&md5=83721d373149bfd9422dd4414db27407CAS | 18464734PubMed |
Watson, J., and Graves, J. (1988). Monotreme cell-cycles and the evolution of homeothermy. Australian Journal of Zoology 36, 573–584.
| Monotreme cell-cycles and the evolution of homeothermy.Crossref | GoogleScholarGoogle Scholar |
Wedlock, D. N., Aldwell, F. E., and Buddle, B. M. (1996). Molecular cloning and characterization of tumour necrosis factor alpha (TNF-α) from the Australian common brushtail possum, Trichosurus vulpecula. Immunology and Cell Biology 74, 151–158.
| Molecular cloning and characterization of tumour necrosis factor alpha (TNF-α) from the Australian common brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVekurw%3D&md5=aae8317cdbb204e7f62e6fc5c6bf9371CAS | 8724002PubMed |
Whittington, C. M., Papenfuss, A. T., Bansal, P., Torres, A. M., Wong, E. S., Deakin, J. E., Graves, T., Alsop, A., Schatzkamer, K., and Kremitzki, C. (2008). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research 18, 986–994.
| Defensins and the convergent evolution of platypus and reptile venom genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVygtr4%3D&md5=7e017f90428fb562edd842444e5d55faCAS | 18463304PubMed |
Whittington, C. M., Sharp, J. A., Papenfuss, A., and Belov, K. (2009). No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk. Australian Journal of Zoology 57, 211–217.
| No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk.Crossref | GoogleScholarGoogle Scholar |
Wirtz, G. H., and Westfall, S. A. (1967). Immune development of the opposum. Immunochemistry 4, 61–63.
| Immune development of the opposum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXnsVCnsA%3D%3D&md5=3972acd9cf33b3c1ee9f325f2ed5e74cCAS | 6030412PubMed |
Wong, E. S., Young, L., Papenfuss, A., and Belov, K. (2006). In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Research 2, 4.
| In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 17094811PubMed |
Wong, E., Papenfuss, A., and Belov, K. (2011). Immunome database for marsupials and monotremes. BMC Immunology 12, 48.
| Immunome database for marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2gurjN&md5=2bc19cd857471454e8e27aea1cc92047CAS | 21854560PubMed |
Wrigley, J. M., and Graves, J. A. M. (1988). Karyotypic conservation in the mammalian order Monotremata (subclass Prototheria). Chromosoma 96, 231–247.
| Karyotypic conservation in the mammalian order Monotremata (subclass Prototheria).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7psFKhsA%3D%3D&md5=d702393dc3518d732c1bd2f4aad447c4CAS | 3359880PubMed |
Zhang, Y., Suankratay, C., Zhang, X. H., Lint, T. F., and Gewurz, H. (1999). Lysis via the lectin pathway of complement activation: minireview and lectin pathway enhancement of endotoxin-initiated hemolysis. Immunopharmacology 42, 81–90.
| Lysis via the lectin pathway of complement activation: minireview and lectin pathway enhancement of endotoxin-initiated hemolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Siurs%3D&md5=a0b340fea7ed2e62e07a80ebb1d25989CAS | 10408369PubMed |