Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Baseline levels of faecal glucocorticoid metabolites and indications of chronic stress in the vulnerable grey-headed flying-fox, Pteropus poliocephalus

Kerryn Parry-Jones A C , Koa Narelle Webster B and Anja Divljan A
+ Author Affiliations
- Author Affiliations

A School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.

B Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

C Corresponding author. Email: flyingfox.ecology@gmail.com

Australian Mammalogy 38(2) 195-203 https://doi.org/10.1071/AM15030
Submitted: 11 August 2015  Accepted: 19 February 2016   Published: 6 May 2016

Abstract

The physiological stress hormone levels and physical condition of captured urban flying-foxes experiencing a food shortage were compared with those of free-living rural flying-foxes with access to supplementary food. Glucocorticoid hormone levels were determined by measuring glucocorticoid metabolites (GCMs) from the faeces of individual animals. The rural flying-foxes were in good condition with high Body Condition Indexes (BCIs) and low levels of GCMs, the range of which may be considered the baseline for this species. In comparison, urban flying-foxes had lower BCIs and elevated levels of GCMs: 75% had levels that were higher than the rural range and 30% were higher by an order of magnitude. Such elevated levels of glucocorticoid (‘stress’) hormones are characteristic of chronic stress. While urbanisation can cause chronic stress, given the low BCIs observed, it is more likely that food shortage was the major stressor in this study. While the rural male and female flying-foxes showed no significant differences in either their levels of faecal glucocorticoid metabolites or their BCIs, significantly different results were found between male and female urban flying-foxes: males were in relatively better condition than females but had higher levels of faecal glucocorticoid metabolites. The autumn and winter reproductive constraints on food-restricted flying-foxes probably explain the differences observed. Additional droppings collected under the urban colony gave similar results to those collected from captured flying-foxes at the same location, and could be a useful non-invasive method for determining the levels of physiological stress in flying-fox colonies.

Additional keywords: body condition index, stress hormones.


References

Boswell, T., Woods, S. C., and Kenagy, G. J. (1994). Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. General and Comparative Endocrinology 96, 339–346.
Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1aks78%3D&md5=57e69baad9c4b6361147bc69084434b7CAS | 7883140PubMed |

Busch, D. S., and Hayward, L. S. (2009). Stress in a conservation context: a discussion of GC actions and how levels change with conservation-relevant variables. Biological Conservation 142, 2844–2853.
Stress in a conservation context: a discussion of GC actions and how levels change with conservation-relevant variables.Crossref | GoogleScholarGoogle Scholar |

Davies, N., Gillett, A., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., and Bradley, A. (2013a). The effect of ACTH upon faecal glucocorticoid excretion in the koala. The Journal of Endocrinology 219, 1–12.
The effect of ACTH upon faecal glucocorticoid excretion in the koala.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ohs7zK&md5=0d77d7af76e747ddd23505b866d04928CAS | 23838520PubMed |

Davies, N. A., Gramotnev, G., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., Rhodes, J. R., and Bradley, A. (2013b). Physiological stress in koala populations near the arid edge of their distribution. PLoS One 8, e79136.
Physiological stress in koala populations near the arid edge of their distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2jtb%2FP&md5=30f4fecf169cdd9ce828cff7d18dec3aCAS | 24265749PubMed |

Davies, N., Gramotnev, G., Seabrook, L., McAlpine, C., Baxter, G., Lunney, D., and Bradley, A. (2014). Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution. Biological Conservation 172, 80–88.
Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution.Crossref | GoogleScholarGoogle Scholar |

Davis, N., Shaffner, C. M., and Smith, T. E. (2005). Evidence that zoo visitors influence HPA activity in spider monkeys (Ateles geoffroyii rufiventris). Applied Animal Behaviour Science 90, 131–141.
Evidence that zoo visitors influence HPA activity in spider monkeys (Ateles geoffroyii rufiventris).Crossref | GoogleScholarGoogle Scholar |

DeGabriel, J. L., Moore, B. D., Marsh, K. J., and Foley, W. J. (2010). The effects of plant secondary metabolites on the interplay between the internal and external environments of marsupial folivores. Chemoecology 20, 97–108.
The effects of plant secondary metabolites on the interplay between the internal and external environments of marsupial folivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1ajsLc%3D&md5=2f7090954dab08d67bff27daebf2778aCAS |

Dehnhard, M., Schreer, A., Krone, O., Jewgenow, K., Krause, M., and Grossmann, R. (2003). Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken (Gallus domesticus), the great cormorant (Phalacrocorax carbo), and the goshawk (Accipiter gentilis). General and Comparative Endocrinology 131, 345–352.
Measurement of plasma corticosterone and fecal glucocorticoid metabolites in the chicken (Gallus domesticus), the great cormorant (Phalacrocorax carbo), and the goshawk (Accipiter gentilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWmtLY%3D&md5=65ec71d459f1b1a16efce41eb75c12e1CAS | 12714017PubMed |

Dickens, M. J., and Romero, L. M. (2013). A consensus endocrine profile for chronically stressed wild animals does not exist. General and Comparative Endocrinology 191, 177–189.
A consensus endocrine profile for chronically stressed wild animals does not exist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWjtrvL&md5=85395531c0e3153fa534a98e1bb19f88CAS | 23816765PubMed |

Divljan, A. (2008). Population ecology of the grey-headed flying-fox Pteropus poliocephalus: a study on the age-structure and the effects of mortality on a vulnerable species. Ph.D. Thesis, University of Sydney.

Divljan, A., Parry-Jones, K., Griffith, M., Whitney, J., Burton, N., Smith, G., and Wardle, G. (2011). Practical solutions for catching and processing grey-headed flying-foxes, Pteropus poliocephalus, based on a colony study at the Royal Botanic Gardens, Sydney. In ‘The Conservation and Biology of Australian Bats’. (Eds B. Law, P. Eby, D. Lunney, and L. Lumsden.) pp. 168–174. (Royal Zoological Society of New South Wales, and the Australasian Bat Society: Sydney.)

Dowle, M., Webster, K. N., and Deane, E. M. (2013). Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney. Australian Mammalogy 35, 1–7.
Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney.Crossref | GoogleScholarGoogle Scholar |

Eby, P. (1999). Low reproductive output in grey-headed flying foxes associated with a short period of food scarcity. Bat Society Newsletter 14, 17–20.

Ellis, W., Metzer, A., Clifton, I. D., and Carrick, F. (2010). limate change and the koala Phascolarctos cinereus: water and energy. Australian Zoology 35, 369–377.

Hall, L., and Richards, G. (2000). ‘Flying-foxes: Fruit and Blossom Bats of Australia.’ (UNSW Press: Sydney.)

Keay, J. M., Singh, J., Gaunt, M. C., and Kaur, T. (2006). Fecal GCs and their metabolites as indicators of stress in various mammalian species: a literature review. Journal of Zoo and Wildlife Medicine 37, 234–244.
Fecal GCs and their metabolites as indicators of stress in various mammalian species: a literature review.Crossref | GoogleScholarGoogle Scholar | 17319120PubMed |

Klose, S. M., Smith, C. L., Denzel, A. J., and Kalko, E. K. V. (2006). Reproduction elevates the corticosterone stress response in common fruit bats. Journal of Comparative Physiology A 192, 341–350.
Reproduction elevates the corticosterone stress response in common fruit bats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1KqsL4%3D&md5=9166576f67c130d66c08aa18cd0c072fCAS |

Lunney, D., and Moon, C. (2011). Blind to bats: traditional prejudices and today’s bad press render bats invisible to public consciousness. In ‘The Conservation and Biology of Australian Bats’. (Eds B. Law, P. Eby, D. Lunney, and L. Lumsden.) pp. 44–65. (Royal Zoological Society of New South Wales, and the Australasian Bat Society: Sydney.)

McGuckin, M. A., and Blackshaw, A. W. (1992). Effects of photoperiod on the reproductive physiology of male flying-foxes, Pteropus poliocephalus. Reproduction, Fertility and Development 4, 43–53.
Effects of photoperiod on the reproductive physiology of male flying-foxes, Pteropus poliocephalus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383mt1ynsw%3D%3D&md5=a5aec65190a7cbc04d5fe5d90f103a9dCAS |

McKenzie, S., and Deane, E. M. (2005). Faecal corticosteroid levels as an indicator of well-being in the tammar wallaby, Macropus eugenii. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 140, 81–87.
Faecal corticosteroid levels as an indicator of well-being in the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FjslShtg%3D%3D&md5=c168f6aa9d427f32e766dca8c5fc4f56CAS |

McKenzie, S., Deane, E. M., and Burnet, L. (2004). Are serum cortisol levels a reliable indicator of wellbeing in the tammar wallaby, Macropus eugenii? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 138, 341–348.
Are serum cortisol levels a reliable indicator of wellbeing in the tammar wallaby, Macropus eugenii? Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cvgvVantw%3D%3D&md5=f939954ba5a2273a2632cfc8120ba1b6CAS |

McMichael, L. A., Edson, D., and Field, H. (2014). Measuring physiological stress in Australian flying-fox populations. EcoHealth , .
Measuring physiological stress in Australian flying-fox populations.Crossref | GoogleScholarGoogle Scholar | 24990534PubMed |

Miller, M. W., Hobbs, N. T., and Sousa, M. C. (1991). Detecting stress responses in Rocky Mountain bighorn sheep (Ovis canadensis canadensis): reliability of cortisol concentrations in urine and feces. Canadian Journal of Zoology 69, 15–24.
Detecting stress responses in Rocky Mountain bighorn sheep (Ovis canadensis canadensis): reliability of cortisol concentrations in urine and feces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhslymsLg%3D&md5=e1f0ae9cfd9ce2f6eb9a1c79aa3548a0CAS |

Millspaugh, J., and Washburn, B. (2003). Within-sample variation of fecal glucocorticoid measurements. General and Comparative Endocrinology 132, 21–26.
Within-sample variation of fecal glucocorticoid measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFWms7k%3D&md5=e07e00d455162e8279c66c9a727e2d1eCAS | 12765640PubMed |

Millspaugh, J., and Washburn, B. (2004). Use of fecal GC metabolite measures in conservation biology research: considerations for application and interpretation. General and Comparative Endocrinology 138, 189–199.
Use of fecal GC metabolite measures in conservation biology research: considerations for application and interpretation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFSjtr8%3D&md5=8b75b6c4a4f3bdebe93bae2a5d57ed46CAS | 15364201PubMed |

Millspaugh, J. J., Washburn, B. E., Milanick, M. A., Beringer, J., Hansen, L. P., and Meyer, T. M. (2002). Non-invasive techniques for stress assessment in white-tailed deer. Wildlife Society Bulletin (1973–2006) 30, 899–907.

Millspaugh, J., Washburn, B., Milanick, M., Slotow, R., and van Dyk, G. (2003). Effects of heat and chemical treatments on fecal GC measurements: implications for sample transport. Wildlife Society Bulletin 31, 399–406.

Narayan, E. J., Webster, K. N., Nicolson, V., Mucci, A., and Hero, J. M. (2013). Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the koala (Phascolarctos cinereus). General and Comparative Endocrinology 187, 39–47.
Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the koala (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Oiu7g%3D&md5=d389f37a08a822d0e9b24b8c48a4f0f5CAS | 23583768PubMed |

Ninnes, C. E., Waas, J. R., Ling, N., Nakagawa, S., Banks, J. C., Bell, D. G., Bright, A., Carey, P. W., Chandler, J., Hudson, Q. J., Ingram, J. R., Lyall, K., Morgan, D. K. J., Stevens, M. I., Wallace, J., and Mostl, E. (2010). Comparing plasma and faecal measures of steroid hormones in Adelie penguins, Pygoscelis adeliae. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 83–94.
Comparing plasma and faecal measures of steroid hormones in Adelie penguins, Pygoscelis adeliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlynsA%3D%3D&md5=ad6b3aabd1c41255bf5da27e80126d36CAS | 19609534PubMed |

Palme, R., Rettenbacher, S., Touma, C., Elasticities-Bahr, S. M., and Mostl, E. (2005). Stress hormones in mammals and birds. Comparative aspects regarding metabolism, excretion, and non-invasive measurement in fecal samples. Annals of the New York Academy of Sciences 1040, 162–171.
Stress hormones in mammals and birds. Comparative aspects regarding metabolism, excretion, and non-invasive measurement in fecal samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1eht7Y%3D&md5=27a5d81033beca33f358b58f28f1afbbCAS | 15891021PubMed |

Parry-Jones, K., and Augee, M. L. (2001). Factors affecting the occupation of a colony site in Sydney, New South Wales by the grey-headed flying-fox, Pteropus poliocephalus (Pteropodidae). Austral Ecology 26, 47–55.

Parry-Jones, K., and Divljan, A. (2010). Preliminary Report – Flying-foxes in trouble – Autumn 2010. Report to National Parks and Wildlife DECC. NSW Department of Environment and Heritage, Sydney.

Partecke, J., Schwabl, I., and Gwinne, E. (2006). Stress and the city: urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952.
Stress and the city: urbanization and its effects on the stress physiology in European blackbirds.Crossref | GoogleScholarGoogle Scholar | 16937632PubMed |

Peel, A. J., Vogelnest, L., Finnigan, M., Grossfeldt, L., and O’Brien, J. K. (2005). Non-invasive fecal hormone analysis and behavioral observations for monitoring stress responses in captive western lowland gorillas (Gorilla gorilla gorilla). Zoo Biology 24, 431–445.
Non-invasive fecal hormone analysis and behavioral observations for monitoring stress responses in captive western lowland gorillas (Gorilla gorilla gorilla).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ghu73P&md5=67d8a73239b8d0f64aebd0c57437d452CAS |

Quinn, P., and Keough, M. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge.)

Reeder, D. M., Kosteczko, N. S., Kunz, T. H., and Widmaier, E. P. (2004a). Changes in baseline and stress-induced GC levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae) General and Comparative Endocrinology 136, 260–269.
Changes in baseline and stress-induced GC levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFKntLc%3D&md5=232e32038ab8b95f356ff28193c8fe8dCAS | 15028530PubMed |

Reeder, D. M., Kunz, T. H., and Widmaier, E. P. (2004b). Baseline and stress-induced GCs during reproduction in the variable flying fox Pteropus hypomelanus (Chiroptera: Pteropodidae). Journal of Experimental Zoology Part A: Comparative Experimental Biology 301A, 682–690.
Baseline and stress-induced GCs during reproduction in the variable flying fox Pteropus hypomelanus (Chiroptera: Pteropodidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlSqtLY%3D&md5=b6662ba22fdac72f9a8e5431c35e1398CAS |

Reeder, D. M., Kosteczko, N. S., Kunz, T. H., and Widmaier, E. P. (2006a). The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan flying fox (Pteropus vampyrus) and the less social little golden-mantled flying fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Hormones and Behavior 49, 484–500.
The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan flying fox (Pteropus vampyrus) and the less social little golden-mantled flying fox (Pteropus pumilus) (Chiroptera: Pteropodidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Whtbw%3D&md5=4961625c67e3e6a0492ec1c0542cdd93CAS | 16380123PubMed |

Reeder, D. M., Raff, H., Kunz, T. H., and Widmaier, E. P. (2006b). Characterization of pituitary–adrenocortical activity in the Malayan flying fox (Pteropus vampyrus) Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 176, 513–519.
Characterization of pituitary–adrenocortical activity in the Malayan flying fox (Pteropus vampyrus)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVarurw%3D&md5=ca0460d89440f53664cf5dd4dd23307dCAS | 16496155PubMed |

Rettenbacher, S., Mostl, E., Hacki, R., Ghareeb, K., and Palme, R. (2004). Measurement of corticosterone metabolites in chicken droppings. British Poultry Science 45, 704–711.
Measurement of corticosterone metabolites in chicken droppings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSnsbrN&md5=41a525b93de81ca5b77c369bd008268fCAS | 15623226PubMed |

Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do GCs influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21, 55–89.
| 1:CAS:528:DC%2BD3cXhs12hu78%3D&md5=cd5d51daa6755a37cd497b25dc2c80b0CAS | 10696570PubMed |

Smith, A. (2007). Population composition and feeding ecology of the grey-headed flying fox, Pteropus poliocephalus (Megachiroptera) in the Sydney region. B.Sc.(Honours) Thesis, University of Technology, Sydney.

Speakman, J. R., and Racey, P. A. (1986). The influence of body condition on sexual development of male brown long‐eared bats (Plecotus auritus) in the wild. Journal of Zoology 210, 515–525.
The influence of body condition on sexual development of male brown long‐eared bats (Plecotus auritus) in the wild.Crossref | GoogleScholarGoogle Scholar |

Thomas, C. D. (1990). Herbivore diets, herbivore colonization, and the escape hypothesis. Ecology 71, 610–615.
Herbivore diets, herbivore colonization, and the escape hypothesis.Crossref | GoogleScholarGoogle Scholar |

Tidemann, C. R., Eby, P., Parry-Jones, K., and Vardon, M. (1999). Grey-headed flying-fox. In ‘The Action Plan for Australian Bats’. (Eds A. Duncan, G. B. Baker, and N. Montgomery.) pp. 31–35. (Environment Australia: Canberra.)

Touma, C., Palme, R., and Sachser, N. (2004). Analyzing corticosterone metabolites in fecal samples of mice: a non-invasive technique to monitor stress hormones. Hormones and Behavior 45, 10–22.
Analyzing corticosterone metabolites in fecal samples of mice: a non-invasive technique to monitor stress hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOitg%3D%3D&md5=bb1802f97719face2098482cff4d3021CAS | 14733887PubMed |

Van der Aa, P. J. H., Lorica, R. P., and Komdeur, J. (2006). The hormonal and behavioral response to the presence and activities of humans in three co-roosting flying-fox species (Acerodon jubatus, Pteropus vampyrus and P. hypomelanus) in Boracay and Mambukal in the Philippines. Acta Zoologica Sinica 52, 827–837.
| 1:CAS:528:DC%2BD2sXhsVynu7bF&md5=34d4a0aab52f4e84fc67e4f876d51f0cCAS |

Von der Ohe, C. G., and Servheen, C. (2002). Measuring stress in mammals using fecal glucocorticoids: opportunities and challenges. Wildlife Society Bulletin 30, 1215–1225.

Wasser, S. K., Hunt, K. E., Brown, J. L., Cooper, K., Crockett, C. M., Bechert, U., Millspaugh, J. J., Larson, S., and Monfort, S. L. (2000). A generalized faecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology 120, 260–275.
A generalized faecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSgtLY%3D&md5=e603134405d97eaebfe8317327dfdd6cCAS | 11121291PubMed |

Widmaier, E. P., and Kunz, T. F. (1993). Basal, diurnal and stress-induced levels of glucose and glucocorticoids in captive bats. The Journal of Experimental Zoology 265, 533–540.
Basal, diurnal and stress-induced levels of glucose and glucocorticoids in captive bats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVWiu78%3D&md5=8223d2f6447e2bc355c84b09c2e04953CAS | 8468542PubMed |

Widmaier, E. P., Harmer, T. L., Sulak, A. M., and Kunz, T. H. (1994). Further characterization of the pituitary–adrenocortical responses to stress in Chiroptera. The Journal of Experimental Zoology 269, 442–449.
Further characterization of the pituitary–adrenocortical responses to stress in Chiroptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVWnug%3D%3D&md5=79b81eed3b6dbae9214fbe3498ed96d1CAS | 8057075PubMed |

Wingfield, J. C. (2013). Ecological processes and the ecology of stress: the impacts of abiotic environmental factors. Functional Ecology 27, 37–44.
Ecological processes and the ecology of stress: the impacts of abiotic environmental factors.Crossref | GoogleScholarGoogle Scholar |

Wingfield, J. C., and Ramenofsky, M. (1997). Corticosterone and facultative dispersal in response to unpredictable events Ardea 85, 155–166.