Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW (Open Access)

Australian lizards are outstanding models for reproductive biology research

James U. Van Dyke https://orcid.org/0000-0002-3933-111X A S , Michael B. Thompson B , Christopher P. Burridge https://orcid.org/0000-0002-8185-6091 C , Meghan A. Castelli D E , Simon Clulow https://orcid.org/0000-0002-5700-6345 F , Duminda S. B. Dissanayake https://orcid.org/0000-0002-7307-4639 D E , Caroline M. Dong https://orcid.org/0000-0003-3352-4006 G , J. Sean Doody H , Danielle L. Edwards https://orcid.org/0000-0002-1165-4427 I , Tariq Ezaz https://orcid.org/0000-0003-4763-1347 D , Christopher R. Friesen https://orcid.org/0000-0001-5338-7454 J , Michael G. Gardner https://orcid.org/0000-0002-8629-354X K L , Arthur Georges https://orcid.org/0000-0003-2428-0361 D , Megan Higgie https://orcid.org/0000-0002-2397-0240 M , Peta L. Hill https://orcid.org/0000-0002-6190-6426 C , Clare E. Holleley https://orcid.org/0000-0002-5257-0019 E , Daniel Hoops https://orcid.org/0000-0002-5707-3513 N O , Conrad J. Hoskin https://orcid.org/0000-0001-8116-6085 M , Deirdre L. Merry https://orcid.org/0000-0001-7479-3144 C , Julia L. Riley https://orcid.org/0000-0001-7691-6910 P , Erik Wapstra https://orcid.org/0000-0002-2050-8026 C , Geoffrey M. While https://orcid.org/0000-0001-8122-9322 C , Sarah L. Whiteley D E , Martin J. Whiting https://orcid.org/0000-0002-4662-0227 Q , Stephen M. Zozaya R and Camilla M. Whittington https://orcid.org/0000-0001-5765-9699 B
+ Author Affiliations
- Author Affiliations

A Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, La Trobe University, Wodonga Campus, Wodonga, Vic. 3690, Australia.

B School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.

C School of Natural Sciences, University of Tasmania, Hobart, Tas. 7001, Australia.

D Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.

E Australian National Wildlife Collection, CSIRO, Canberra, ACT 2601, Australia.

F Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.

G School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.

H Department of Integrative Biology, University of South Florida, St Petersburg Campus, St Petersburg, FL 33701, USA.

I School of Natural Sciences, University of California Merced, Merced, CA 95344, USA.

J School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.

K College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.

L Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5001, Australia.

M College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

N Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada.

O Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.

P Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.

Q Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

R Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.

S Corresponding author. Email: j.vandyke@latrobe.edu.au

Australian Journal of Zoology 68(4) 168-199 https://doi.org/10.1071/ZO21017
Submitted: 14 May 2021  Accepted: 17 August 2021   Published: 28 September 2021

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

Australian lizards are a diverse group distributed across the continent and inhabiting a wide range of environments. Together, they exhibit a remarkable diversity of reproductive morphologies, physiologies, and behaviours that is broadly representative of vertebrates in general. Many reproductive traits exhibited by Australian lizards have evolved independently in multiple lizard lineages, including sociality, complex signalling and mating systems, viviparity, and temperature-dependent sex determination. Australian lizards are thus outstanding model organisms for testing hypotheses about how reproductive traits function and evolve, and they provide an important basis of comparison with other animals that exhibit similar traits. We review how research on Australian lizard reproduction has contributed to answering broader evolutionary and ecological questions that apply to animals in general. We focus on reproductive traits, processes, and strategies that are important areas of current research, including behaviours and signalling involved in courtship; mechanisms involved in mating, egg production, and sperm competition; nesting and gestation; sex determination; and finally, birth in viviparous species. We use our review to identify important questions that emerge from an understanding of this body of research when considered holistically. Finally, we identify additional research questions within each topic that Australian lizards are well suited for reproductive biologists to address.

Keywords: social behaviour, mating behaviour, developmental biology, sexual conflict, chemical communication, squamate, reptile, ecology, evolution.


References

Abell, A. J. (1997). Estimating paternity with spatial behaviour and DNA fingerprinting in the striped plateau lizard, Sceloporus virgatus (Phrynosomatidae). Behavioral Ecology and Sociobiology 41, 217–226.
Estimating paternity with spatial behaviour and DNA fingerprinting in the striped plateau lizard, Sceloporus virgatus (Phrynosomatidae).Crossref | GoogleScholarGoogle Scholar |

Alonzo, S. H., and Sinervo, B. (2001). Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana. Behavioral Ecology and Sociobiology 49, 176–186.
Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana.Crossref | GoogleScholarGoogle Scholar |

Amundsen, T., and Slagsvold, T. (1996). Lack’s brood reduction hypothesis and avian hatching asynchrony: what’s next? Oikos 76, 613–620.
Lack’s brood reduction hypothesis and avian hatching asynchrony: what’s next?Crossref | GoogleScholarGoogle Scholar |

Andersson, M. B. (1994). ‘Sexual Selection.’ (Princeton University Press: Princeton, NJ.)

Andrews, R. M., Thompson, M. B., and Green, V. W. (2013). Does low gas permeability of rigid-shelled gekkotan eggs affect embryonic development? Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology 319, 259–267.

Angilletta, M. J. (2009). ‘Thermal Adaptation: a Theoretical and Empirical Synthesis.’ (Oxford University Press: Oxford, UK.)

Arnqvist, G. (2014). Cryptic female choice. In ‘The Evolution of Insect Mating Systems’. (Eds S. D. Simmons and L. W. Simmons.) pp. 204–220. (Oxford University Press: Oxford, UK.)

Bachtrog, D., Mank, J.E., Peichel, C.L., Kirkpatrick, M., Otto, S.P., Ashman, T.L., Hahn, M.W., Kitano, J., Mayrose, I., Ming, R., Perrin, N., Ross, L., Valenzuela, N., Vamosi, J.C., Tree of Sex Consortium (2014). Sex determination: why so many ways of doing it? PLoS Biology 12, e1001899.
Sex determination: why so many ways of doing it?Crossref | GoogleScholarGoogle Scholar | 24983465PubMed |

Beck, L. A., O’Bryant, E. L., and Wade, J. S. (2008). Sex and seasonal differences in morphology of limbic forebrain nuclei in the green anole lizard. Brain Research 1227, 68–75.
Sex and seasonal differences in morphology of limbic forebrain nuclei in the green anole lizard.Crossref | GoogleScholarGoogle Scholar | 18598684PubMed |

Biazik, J. M., Thompson, M. B., and Murphy, C. R. (2007). The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 177, 935–943.
The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles.Crossref | GoogleScholarGoogle Scholar | 17657493PubMed |

Biazik, J. M., Thompson, M. B., and Murphy, C. R. (2008). Claudin-5 is restricted to the tight junction region of uterine epithelial cells in the uterus of pregnant/gravid squamate reptiles. The Anatomical Record 291, 547–556.
Claudin-5 is restricted to the tight junction region of uterine epithelial cells in the uterus of pregnant/gravid squamate reptiles.Crossref | GoogleScholarGoogle Scholar | 18384123PubMed |

Biazik, J. M., Thompson, M. B., and Murphy, C. R. (2010). Desmosomes in the uterine epithelium of noninvasive skink placentae. The Anatomical Record 293, 502–512.
Desmosomes in the uterine epithelium of noninvasive skink placentae.Crossref | GoogleScholarGoogle Scholar | 20169564PubMed |

Black, D. G. (1983). Encephalization of Australian lizards. Ph.D. Thesis, Monash University, Melbourne.

Blackburn, D. G. (2000). Classification of the reproductive patterns of amniotes. Herpetological Monograph 14, 371–377.
Classification of the reproductive patterns of amniotes.Crossref | GoogleScholarGoogle Scholar |

Blackburn, D. G. (2015). Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. Journal of Morphology 276, 961–990.
Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis.Crossref | GoogleScholarGoogle Scholar | 24652663PubMed |

Blanks, A. M., and Thornton, S. (2003). The role of oxytocin in parturition. BJOG 110, 46–51.
The role of oxytocin in parturition.Crossref | GoogleScholarGoogle Scholar | 12763111PubMed |

Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., et al (2013). The conservation status of the world’s reptiles. Biological Conservation 157, 372–385.
The conservation status of the world’s reptiles.Crossref | GoogleScholarGoogle Scholar |

Böhme, W. (1995). Hemiclitoris discovered: a fully differentiated erectile structure in female monitor lizards (Varanus spp.) (Reptilia: Varanidae). Journal of Zoological Systematics and Evolutionary Research 33, 129–132.

Böhme, W., and Ziegler, T. (2009). A review of iguanian and anguimorph lizard genitalia (Squamata: Chamaeleonidae; Varanoidea, Shinisauridae, Xenosauridae, Anguidae) and their phylogenetic significance: comparisons with molecular data sets. Journal of Zoological Systematics and Evolutionary Research 47, 189–202.
A review of iguanian and anguimorph lizard genitalia (Squamata: Chamaeleonidae; Varanoidea, Shinisauridae, Xenosauridae, Anguidae) and their phylogenetic significance: comparisons with molecular data sets.Crossref | GoogleScholarGoogle Scholar |

Bókony, V., Kövér, S., Nemesházi, E., Liker, A., and Székely, T. (2017). Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20160325.
Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters.Crossref | GoogleScholarGoogle Scholar |

Bonnett, M., and Bull, C. M. (2004). Egernia striolata (tree skink) reproduction. Herpetological Review 25, 389.

Bordogna, G., Cunningham, G., Fitzpatrick, L. J., Halliwell, B., MacGregor, H. E. A., Munch, K. L., Wapstra, E., and While, G. M. (2016). An experimental test of relatedness-based mate discrimination in a social lizard. Behavioral Ecology and Sociobiology 70, 2139–2147.
An experimental test of relatedness-based mate discrimination in a social lizard.Crossref | GoogleScholarGoogle Scholar |

Botterill-James, T., Halliwell, B., Cooper-Scott, E., Uller, T., Wapstra, E., and While, G. M. (2016). Habitat structure influences the extent of parent–offspring association in a social lizard. Frontiers in Social Evolution 4, 96..

Boyd, J. W., Lechuga, T. J., Ebner, C. A., Kirby, M. A., and Yellon, S. M. (2009). Cervix remodeling and parturition in the rat: lack of a role for hypogastric innervation. Reproduction 137, 739–748.
Cervix remodeling and parturition in the rat: lack of a role for hypogastric innervation.Crossref | GoogleScholarGoogle Scholar | 19158235PubMed |

Boyle, M., Hone, J., Schwanz, L. E., and Georges, A. (2014). Under what conditions do climate-driven sex ratios enhance versus diminish population persistence? Ecology and Evolution 4, 4522–4533.
Under what conditions do climate-driven sex ratios enhance versus diminish population persistence?Crossref | GoogleScholarGoogle Scholar | 25512848PubMed |

Bradbury, J. W., and Vehrencamp, S. L. (2011). ‘Principles of Animal Communication.’ 2nd edn. (Sinauer: Sunderland, MA.)

Brandley, M. C., Bragg, J. G., Singhal, S., Chapple, D. G., Jennings, C. K., Lemmon, A. R., Lemmon, E. M., Thompson, M. B., and Moritz, C. (2015). Evaluating the performance of anchored hybrid enrichment at the tips of the tree of life: a phylogenetic analysis of Australian Eugongylus group scincid lizards. BMC Evolutionary Biology 15, 62.
Evaluating the performance of anchored hybrid enrichment at the tips of the tree of life: a phylogenetic analysis of Australian Eugongylus group scincid lizards.Crossref | GoogleScholarGoogle Scholar | 25880916PubMed |

Brennan, P. L. (2016). Studying genital coevolution to understand intromittent organ morphology. Integrative and Comparative Biology 56, 669–681.
Studying genital coevolution to understand intromittent organ morphology.Crossref | GoogleScholarGoogle Scholar | 27252198PubMed |

Brennan, P. L., and Prum, R. O. (2015). Mechanisms and evidence of genital coevolution: the roles of natural selection, mate choice, and sexual conflict. In ‘The Genetics and Biology of Sexual Conflict’. (Eds W. R. Rice and S. Gavrilets.) pp. 385–406. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.)

Bukhari, S., Saul, M., James, N., Bensky, M., Stein, L., Trapp, R., and Bell, A. (2019). Neurogenomic insights into paternal care and its relation to territorial aggression. Nature Communications 10, 4437.
Neurogenomic insights into paternal care and its relation to territorial aggression.Crossref | GoogleScholarGoogle Scholar | 31570726PubMed |

Bull, J. J. (1980). Sex determination in reptiles. The Quarterly Review of Biology 55, 3–21.
Sex determination in reptiles.Crossref | GoogleScholarGoogle Scholar |

Bull, J. J. (1981). Evolution of environmental sex determination from genotypic sex determination. Heredity 47, 173–184.
Evolution of environmental sex determination from genotypic sex determination.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M. (1988). Mate fidelity in an Australian lizard Trachydosaurus rugosus. Behavioral Ecology and Sociobiology 23, 45–49.
Mate fidelity in an Australian lizard Trachydosaurus rugosus.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M. (2000). Monogamy in lizards. Behavioural Processes 51, 7–20.
Monogamy in lizards.Crossref | GoogleScholarGoogle Scholar | 11074308PubMed |

Bull, C. M., and Baghurst, B. (1998). Home range overlap of mothers and their offspring in the sleepy lizard, Tiliqua rugosa. Behavioral Ecology and Sociobiology 42, 357–362.
Home range overlap of mothers and their offspring in the sleepy lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Bull, M, and Lindle, C (2002). Following trails of partners in the monogamous lizard, Tiliqua rugosa. Acta Ethologica 5, 25–28.
Following trails of partners in the monogamous lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Bedford, G. S., and Schulz, B. A. (1993a). How do sleepy lizards find each other? Herpetologica 49, 294–300.

Bull, C. M., Pamula, Y., and Schulze, L. (1993b). Parturition in the sleepy lizard, Tiliqua rugosa. Journal of Herpetology 27, 489–492.
Parturition in the sleepy lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Cooper, S. J. B., and Baghurst, B. C. (1998). Social monogamy and extra-pair fertilization in an Australian lizard, Tiliqua rugosa. Behavioral Ecology and Sociobiology 44, 63–72.
Social monogamy and extra-pair fertilization in an Australian lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Griffin, C. L., and Johnston, G. R. (1999a). Olfactory discrimination in scat-piling lizards. Behavioral Ecology 10, 136–140.
Olfactory discrimination in scat-piling lizards.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Griffin, C. L., and Perkins, M. V. (1999b). Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata. Acta Ethologica 2, 35–42.
Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Griffin, C. L., Lanham, E. J., and Johnston, G. R. (2000). Recognition of pheromones from group members in a gregarious lizard, Egernia stokesii. Journal of Herpetology 34, 92–99.
Recognition of pheromones from group members in a gregarious lizard, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Gardner, M. G., Sih, A., Spiegel, O., Godfrey, S. S., and Leu, S. (2017). Why is social behaviour rare in reptiles? Lessons from sleepy lizards. Advances in the Study of Behavior 49, 1–26.
Why is social behaviour rare in reptiles? Lessons from sleepy lizards.Crossref | GoogleScholarGoogle Scholar |

Bulmer, M., and Bull, J. (1982). Models of polygenic sex determination and sex ratio control. Evolution 36, 13–26.
Models of polygenic sex determination and sex ratio control.Crossref | GoogleScholarGoogle Scholar | 28581110PubMed |

Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27, 2576–2585.
Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography.Crossref | GoogleScholarGoogle Scholar |

Campos, S. M., Pruett, J. A., Soini, H. A., Zúñiga-Vega, J. J., Goldberg, J. K., Vital-García, C., Hews, D. K., Novotny, M. V., and Martins, E. P. (2020). Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behavioral Ecology 31, 978–991.
Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards.Crossref | GoogleScholarGoogle Scholar | 32764859PubMed |

Castelli, M. A., Georges, A., Cherryh, C., Rosauer, D. F., Sarre, S. D., Contador‐Kelsall, I., and Holleley, C. E. (2021). Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard. Diversity & Distributions 27, 427–438.
Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard.Crossref | GoogleScholarGoogle Scholar |

Chaim, W., and Mazor, M. (1998). The relationship between hormones and human parturition. Archives of Gynecology and Obstetrics 262, 43–51.
The relationship between hormones and human parturition.Crossref | GoogleScholarGoogle Scholar | 9835999PubMed |

Challis, J., Sloboda, D., Matthews, S., Holloway, A., Alfaidy, N., Howe, D., Fraser, M., and Newnham, J. (2000). Fetal hypothalamic-pituitary adrenal (HPA) development and activation as a determinant of the timing of birth, and of postnatal disease. Endocrine Research 26, 489–504.
Fetal hypothalamic-pituitary adrenal (HPA) development and activation as a determinant of the timing of birth, and of postnatal disease.Crossref | GoogleScholarGoogle Scholar | 11196419PubMed |

Chapple, D. G. (2003). Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetological Monograph 17, 145–180.
Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards.Crossref | GoogleScholarGoogle Scholar |

Chapple, D. G. (2005). Life history and reproductive ecology of White’s skink, Egernia whitii. Australian Journal of Zoology 53, 353–360.
Life history and reproductive ecology of White’s skink, Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

Chapple, D., and Keogh, J. S. (2005). Complex mating system and dispersal patterns in a social lizard, Egernia whitii. Molecular Ecology 14, 1215–1227.
Complex mating system and dispersal patterns in a social lizard, Egernia whitii.Crossref | GoogleScholarGoogle Scholar | 15773948PubMed |

Chapple, D., and Keogh, J. S. (2006). Group structure and stability in social aggregations of White’s skink, Egernia whitii. Ethology 112, 247–257.
Group structure and stability in social aggregations of White’s skink, Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

Charnier, M. (1966). Action de la température sur le sex-ratio chez l’embryon d’Agamaagama (Agamidae, Lacertilien). Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales 160, 1470–1472.

Charnov, E. L., and Bull, J. (1977). When is sex environmentally determined? Nature 266, 828–830.
When is sex environmentally determined?Crossref | GoogleScholarGoogle Scholar | 865602PubMed |

Chávez-Genaro, R., Lombide, P., and Anesetti, G. (2006). A quantitative study of rat uterine sympathetic innervation during pregnancy and post partum. Reproduction, Fertility and Development 18, 525–531.
A quantitative study of rat uterine sympathetic innervation during pregnancy and post partum.Crossref | GoogleScholarGoogle Scholar |

Chelini, M., Brock, K., Yeager, J., and Edwards, D. (2021). Environmental drivers of sexual dimorphism in a lizard with alternative mating strategies. Journal of Evolutionary Biology 34, 1241–1255.
Environmental drivers of sexual dimorphism in a lizard with alternative mating strategies.Crossref | GoogleScholarGoogle Scholar | 34101919PubMed |

Christian, K. (2004). Varanus panoptes. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. King.) pp. 423–429. (Indiana University Press: Bloomington.)

Cogger, H. G. (2018). ‘Reptiles & Amphibians of Australia.’ 7th edn. (CSIRO Publishing: Melbourne.)

Cole, C. J. (1966). Femoral glands in lizards: a review. Herpetologica 22, 199–206.

Cooper, W. E. (1994). Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships. Journal of Chemical Ecology 20, 439–487.
Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships.Crossref | GoogleScholarGoogle Scholar | 24242066PubMed |

Cooper, W. E. (1998). Evaluation of swab and related tests as a bioassay for assessing responses by squamate reptiles to chemical stimuli. Journal of Chemical Ecology 24, 841–866.
Evaluation of swab and related tests as a bioassay for assessing responses by squamate reptiles to chemical stimuli.Crossref | GoogleScholarGoogle Scholar |

Cooper, W. E., and Grastka, W. R. (1987). Lingual responses to chemical fractions of urodaeal glandular pheromone to the skink Eumeces laticeps. The Journal of Experimental Zoology 242, 249–253.
Lingual responses to chemical fractions of urodaeal glandular pheromone to the skink Eumeces laticeps.Crossref | GoogleScholarGoogle Scholar |

Cooper, W. E., and Trauth, S. E. (1992). Discrimination of conspecific male and female cloacal chemical stimuli by males and possession of a probable pheromone gland by females in a cordylid lizard, Gerrhosaurus nigrolineatus. Herpetologica 48, 229–236.

Corl, A., Davis, A. R., Kuchta, S. R., Comendant, T., and Sinervo, B. (2010a). Alternative mating strategies and the evolution of sexual size dimorphism in the side‐blotched lizard, Uta stansburiana: a population‐level comparative analysis. Evolution 64, 79–96.
Alternative mating strategies and the evolution of sexual size dimorphism in the side‐blotched lizard, Uta stansburiana: a population‐level comparative analysis.Crossref | GoogleScholarGoogle Scholar | 19659598PubMed |

Corl, A., Davis, A. R., Kuchta, S. R., and Sinervo, B. (2010b). Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proceedings of the National Academy of Sciences of the United States of America 107, 4254–4259.
Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation.Crossref | GoogleScholarGoogle Scholar | 20160090PubMed |

Cornejo-Páramo, P., Dissanayake, D. S. B., Lira-Noriega, A., Martínez-Pacheco, M. L., Acosta, A., Ramírez-Suástegui, C., Méndez-de-la-Cruz, F. R., Székely, T., Urrutia, A. O., Georges, A., and Cortez, D. (2020a). Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biology and Evolution 12, 924–930.
Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes.Crossref | GoogleScholarGoogle Scholar | 32433751PubMed |

Cornejo-Páramo, P., Lira-Noriega, A., Ramírez-Suástegui, C., Méndez-De-La-Cruz, F. R., Székely, T., Urrutia, A. O., and Cortez, D. (2020b). Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation. BMC Evolutionary Biology 20, 103.
Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation.Crossref | GoogleScholarGoogle Scholar | 32807071PubMed |

Cornwallis, C., West, S., Davis, K., and Griffin, A. (2010). Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972.
Promiscuity and the evolutionary transition to complex societies.Crossref | GoogleScholarGoogle Scholar | 20725039PubMed |

Cox, R. M., and Calsbeek, R. (2010). Cryptic sex-ratio bias provides indirect genetic benefits despite sexual conflict. Science 328, 92–94.
Cryptic sex-ratio bias provides indirect genetic benefits despite sexual conflict.Crossref | GoogleScholarGoogle Scholar | 20203012PubMed |

Cree, A., Thompson, M. B., and Daugherty, C. H. (1995). Tuatara sex determination. Nature 375, 543.
Tuatara sex determination.Crossref | GoogleScholarGoogle Scholar |

Crespi, B., and Semeniuk, C. (2004). Parent–offspring conflict in the evolution of vertebrate reproductive mode. American Naturalist 163, 635–653.
Parent–offspring conflict in the evolution of vertebrate reproductive mode.Crossref | GoogleScholarGoogle Scholar |

Cunningham, G. D., While, G. M., and Wapstra, E. (2017). Climate and sex ratio variation in a viviparous lizard. Biology Letters 13, 20170218.
Climate and sex ratio variation in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar | 28566543PubMed |

Cunningham, G. D., While, G. M., Olsson, M., Ljungström, G., and Wapstra, E. (2020). Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard. Ecology 101, e03136.
Degrees of change: between and within population variation in thermal reaction norms of phenology in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar | 32691871PubMed |

Darwin, C. (1871). ‘The Descent of Man, and Selection in Relation to Sex.’ (John Murray: London.)

Davis, A. R., Corl, A., Surget-Groba, Y., and Sinervo, B. (2011). Convergent evolution of kin-based sociality in a lizard. Proceedings of the Royal Society B: Biological Sciences 278, 1507–1514.
Convergent evolution of kin-based sociality in a lizard.Crossref | GoogleScholarGoogle Scholar | 20926442PubMed |

Dissanayake, D. S. B., Holleley, C. E., Hill, L. K., O’Meally, D., Deakin, J. E., and Georges, A. (2020). Identification of Y chromosome markers in the eastern three-lined skink (Bassiana duperreyi) using in silico whole genome subtraction. BMC Genomics 21, 667.
Identification of Y chromosome markers in the eastern three-lined skink (Bassiana duperreyi) using in silico whole genome subtraction.Crossref | GoogleScholarGoogle Scholar |

Dissanayake, D. S. B., Holleley, C. E., Deakin, J. E., and Georges, A. (2021). High elevation increases the risk of Y chromosome loss in alpine skink populations with sex reversal. Heredity 126, 805–816.
High elevation increases the risk of Y chromosome loss in alpine skink populations with sex reversal.Crossref | GoogleScholarGoogle Scholar |

Dong, C., Johnston, G., Stuart-Fox, D., Moussalli, A., Rankin, K., and McLean, C. (2021a). Elevation of divergent color polymorphic and monomorphic lizard lineages (Squamata: Agamidae) to species level. Ichthyology & Herpetology 109, 43–54.
Elevation of divergent color polymorphic and monomorphic lizard lineages (Squamata: Agamidae) to species level.Crossref | GoogleScholarGoogle Scholar |

Dong, C. M., Rankin, K. J., McLean, C. A., and Stuart-Fox, D. (2021b). Maternal reproductive output and F1 hybrid fitness may influence contact zone dynamics. Journal of Evolutionary Biology 34, 680–694.
Maternal reproductive output and F1 hybrid fitness may influence contact zone dynamics.Crossref | GoogleScholarGoogle Scholar | 33580546PubMed |

Doody, J. S., Freedberg, S., and Keogh, J. S. (2009). Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. The Quarterly Review of Biology 84, 229–252.
Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses.Crossref | GoogleScholarGoogle Scholar | 19764282PubMed |

Doody, J. S., Burghardt, G. M., and Dinets, V. (2013). Breaking the social–asocial dichotomy: a role for reptiles in social behaviour research? Ethology 119, 95–103.
Breaking the social–asocial dichotomy: a role for reptiles in social behaviour research?Crossref | GoogleScholarGoogle Scholar |

Doody, J. S., James, H., Ellis, R., Gibson, N., Raven, M., Mahony, S., Hamilton, D. G., Rhind, D., Clulow, S., and McHenry, C. R. (2014). Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. Journal of Herpetology 48, 363–370.
Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes.Crossref | GoogleScholarGoogle Scholar |

Doody, J. S., James, H., Colyvas, K., Mchenry, C. R., and Clulow, S. (2015). Deep nesting in a lizard, déjà vu devil’s corkscrews: first helical reptile burrow and deepest vertebrate nest. Biological Journal of the Linnean Society 116, 13–26.
Deep nesting in a lizard, déjà vu devil’s corkscrews: first helical reptile burrow and deepest vertebrate nest.Crossref | GoogleScholarGoogle Scholar |

Doody, J. S., Rhind, D., Green, B., Castellano, C., McHenry, C., and Clulow, S. (2017). Chronic effects of an invasive species on an animal community. Ecology 98, 2093–2101.
Chronic effects of an invasive species on an animal community.Crossref | GoogleScholarGoogle Scholar | 28477376PubMed |

Doody, J. S., McHenry, C., Brown, M., Canning, G., Vas, G., and Clulow, S. (2018a). Deep, helical, communal nesting and emergence in the sand monitor: ecology informing paleoecology? Journal of Zoology 305, 88–95.
Deep, helical, communal nesting and emergence in the sand monitor: ecology informing paleoecology?Crossref | GoogleScholarGoogle Scholar |

Doody, J. S., McHenry, C. R., Durkin, L., Brown, M., Simms, A., Coleman, L., Phizacklea, C., Jones, H., Phizacklea, O., and Clulow, S. (2018b). Deep communal nesting by yellow-spotted monitors in a desert ecosystem: indirect evidence for a response to extreme dry conditions. Herpetologica 74, 306–310.
Deep communal nesting by yellow-spotted monitors in a desert ecosystem: indirect evidence for a response to extreme dry conditions.Crossref | GoogleScholarGoogle Scholar |

Doody, J. S., McGlashan, J., Fryer, H., Coleman, L., James, H., Soennichsen, K., Rhind, D., and Clulow, S. (2020). Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Scientific Reports 10, 16048.
Plasticity in nest site choice behavior in response to hydric conditions in a reptile.Crossref | GoogleScholarGoogle Scholar | 32994522PubMed |

Doody, J. S., Burghardt, G. M., and Dinets, V. (2021a). ‘The Secret Social Lives of Reptiles.’ (Johns Hopkins University Press: Baltimore, MD.)

Doody, J. S., Soennichsen, K. F., James, H., McHenry, C., and Clulow, S. (2021b). Ecosystem engineering by deep-nesting monitor lizards. Ecology 102, e03271.
Ecosystem engineering by deep-nesting monitor lizards.Crossref | GoogleScholarGoogle Scholar | 33336357PubMed |

Dooren, T. J. V., and Leimar, O. (2003). The evolution of environmental and genetic sex determination in fluctuating environments. Evolution 57, 2667–2677.
The evolution of environmental and genetic sex determination in fluctuating environments.Crossref | GoogleScholarGoogle Scholar |

Duffield, G. A., and Bull, C. M. (1996). Characteristics of the litter of the gidgee skink, Egernia stokesii. Wildlife Research 23, 337–342.
Characteristics of the litter of the gidgee skink, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Duffield, G. A., and Bull, C. M. (2002). Stable social aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89, 424–427.
Stable social aggregations in an Australian lizard, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 12435097PubMed |

Düsing, C. (1884). Die Regulierung des Geschlechtsverhältnisses bei der Vermehrung der Menschen, Tiere und Pflanzen. Jenaische Zeitschrift Für Naturwissenschaft 17, 593–940.

Eberhard, W. G. (1996). ‘Female Control: Sexual Selection by Cryptic Female Choice.’ (Princeton University Press: Princeton, NJ.)

Ebrahimi, M., Godfrey, S. S., Fenner, A. L., and Bull, C. M. (2014). Mating behaviour in pygmy bluetongue lizards: do females ‘attract’ male lizards? Australian Journal of Zoology 62, 491–497.
Mating behaviour in pygmy bluetongue lizards: do females ‘attract’ male lizards?Crossref | GoogleScholarGoogle Scholar |

Eckhardt, F., Kappeler, P. M., and Kraus, C. (2017). Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Scientific Reports 7, 11397.
Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi).Crossref | GoogleScholarGoogle Scholar | 28900276PubMed |

Edwards, D. L., Melville, J., Joseph, L., and Keogh, J. S. (2015). Ecological divergence, adaptive diversification, and the evolution of social signaling traits: an empirical study in arid Australian lizards. American Naturalist 186, E144–E161.
Ecological divergence, adaptive diversification, and the evolution of social signaling traits: an empirical study in arid Australian lizards.Crossref | GoogleScholarGoogle Scholar |

Eizaguirre, C., Laloi, D., Massot, M., Richard, M., Federici, P., and Clobert, J. (2007). Condition dependence of reproductive strategy and the benefits of polyandry in a viviparous lizard. Proceedings of the Royal Society B: Biological Sciences 274, 425–430.
Condition dependence of reproductive strategy and the benefits of polyandry in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar | 17164207PubMed |

Ezaz, T., Sarre, S. D., O’Meally, D., Graves, J. A. M., and Georges, A. (2009). Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenetic and Genome Research 127, 249–260.
Sex chromosome evolution in lizards: independent origins and rapid transitions.Crossref | GoogleScholarGoogle Scholar | 20332599PubMed |

Fenner, A. L., Pavey, C., and Bull, C. M. (2012). Behavioural observations and use of burrow systems by an endangered Australian arid-zone lizard, Slater’s skink (Liopholis slateri). Australian Journal of Zoology 60, 127–132.
Behavioural observations and use of burrow systems by an endangered Australian arid-zone lizard, Slater’s skink (Liopholis slateri).Crossref | GoogleScholarGoogle Scholar |

Firman, R. C., Gasparini, C., Manier, M. K., and Pizzari, T. (2017). Postmating female control: 20 years of cryptic female choice. Trends in Ecology & Evolution 32, 368–382.
Postmating female control: 20 years of cryptic female choice.Crossref | GoogleScholarGoogle Scholar |

Fischer, K., Brakefield, P. M., and Zwaan, B. J. (2003). Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology 84, 3138–3147.
Plasticity in butterfly egg size: why larger offspring at lower temperatures?Crossref | GoogleScholarGoogle Scholar |

Fischer, E., Roland, A., Moskowitz, N., Tapia, E., Kyle, S., Coloma, L., and O’Connell, L. (2019). The neural basis of tadpole transport in poison frogs. Proceedings of the Royal Society B: Biological Sciences 286, 20191084.
The neural basis of tadpole transport in poison frogs.Crossref | GoogleScholarGoogle Scholar | 31311480PubMed |

Fisher, R. A. (1930). ‘The Genetical Theory of Natural Selection.’ (Clarendon Press: Oxford, UK.)

Fisher, R. A. (1958). ‘The Genetical Theory of Natural Selection.’ (Dover Publications, Inc.: New York.)

Fitze, P. S., Galliard, J. F. L., Federici, P., Richard, M., and Clobert, J. (2005). Conflict over multiple‐partner mating between males and females of the polygynandrous common lizards. Evolution 59, 2451–2459.
Conflict over multiple‐partner mating between males and females of the polygynandrous common lizards.Crossref | GoogleScholarGoogle Scholar | 16396185PubMed |

Foster, C. S. P., Thompson, M. B., Van Dyke, J. U., Brandley, M. C., and Whittington, C. M. (2020). Emergence of an evolutionary innovation: gene expression differences associated with the transition between oviparity and viviparity. Molecular Ecology 29, 1315–1327.
Emergence of an evolutionary innovation: gene expression differences associated with the transition between oviparity and viviparity.Crossref | GoogleScholarGoogle Scholar |

Fox, S. F., and Shipman, P. A. (2003). Social behavior at high and low elevations: environmental release and phylogenetic effects in Liolaemus. In ‘Lizard Social Behavior’. (Eds S. F. Fox, J. K. McCoy, and T. A. Baird.) pp. 310–355. (Johns Hopkins University Press: Baltimore and London.)

Frere, C. H., Chandrasoma, D., and Whiting, M. J. (2015). Polyandry in dragon lizards: inbred paternal genotypes sire fewer offspring. Ecology and Evolution 5, 1686–1692.
Polyandry in dragon lizards: inbred paternal genotypes sire fewer offspring.Crossref | GoogleScholarGoogle Scholar | 25937911PubMed |

Friesen, C. R., Uhrig, E. J., Squire, M. K., Mason, R. T., and Brennan, P. L. R. (2014). Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proceedings of the Royal Society B: Biological Sciences 281, 20132694.
Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia.Crossref | GoogleScholarGoogle Scholar | 24225467PubMed |

Friesen, C. R., Uhrig, E. J., Mason, R. T., and Brennan, P. L. R. (2016). Female behaviour and the interaction of male and female genital traits mediate sperm transfer during mating. Journal of Evolutionary Biology 29, 952–964.
Female behaviour and the interaction of male and female genital traits mediate sperm transfer during mating.Crossref | GoogleScholarGoogle Scholar | 26809830PubMed |

Friesen, C. R., Johansson, R., and Olsson, M. (2017a). Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon. Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology 327, 433–443.
Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon.Crossref | GoogleScholarGoogle Scholar | 29356430PubMed |

Friesen, C. R., Wilson, M. R., Rollings, N., Sudyka, J., Whittington, C. M., Giraudeau, M., and Olsson, M. (2017b). Conditional handicaps in exuberant lizards: bright color in aggressive males is correlated with high levels of free radicals. Frontiers in Ecology and Evolution 5, 1.
Conditional handicaps in exuberant lizards: bright color in aggressive males is correlated with high levels of free radicals.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., de Graaf, S. P., and Olsson, M. (2019). The relationship of body condition, superoxide dismutase and superoxide with sperm performance. Behavioral Ecology 30, 1351–1363.
The relationship of body condition, superoxide dismutase and superoxide with sperm performance.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., Kahrl, A. F., and Olsson, M. (2020a). Sperm competition in squamate reptiles. Philosophical Transactions of the Royal Society B: Biological Sciences 375, 20200079.
Sperm competition in squamate reptiles.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., Noble, D. W. A., and Olsson, M. (2020b). The role of oxidative stress in postcopulatory selection. Philosophical Transactions of the Royal Society B: Biological Sciences 375, 20200065.
The role of oxidative stress in postcopulatory selection.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., Rollings, N., Wilson, M., Whittington, C. M., Shine, R., and Olsson, M. (2020c). Covariation in superoxide, sperm telomere length and sperm velocity in a polymorphic reptile. Behavioral Ecology and Sociobiology 74, 74.
Covariation in superoxide, sperm telomere length and sperm velocity in a polymorphic reptile.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., Wilson, M., Rollings, N., Sudyka, J., Giraudeau, M., Whittington, C. M., and Olsson, M. (2021). Exercise training has morph-specific effects on telomere, body condition and growth dynamics in a color-polymorphic lizard. The Journal of Experimental Biology 224, jeb242164.
Exercise training has morph-specific effects on telomere, body condition and growth dynamics in a color-polymorphic lizard.Crossref | GoogleScholarGoogle Scholar | 33785504PubMed |

García-Roa, R., Jara, M., Baeckens, S., López, P., Damme, R. V., Martín, J., and Pincheira-Donoso, D. (2017). Macroevolutionary diversification of glands for chemical communication in squamate reptiles. Scientific Reports 7, 9288.
Macroevolutionary diversification of glands for chemical communication in squamate reptiles.Crossref | GoogleScholarGoogle Scholar | 28839252PubMed |

Gardner, M., Bull, C., Cooper, S., and Duffield, G. (2000). Microsatellite mutations in litters of the Australian lizard Egernia stokesii. Journal of Evolutionary Biology 13, 551.
Microsatellite mutations in litters of the Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Bull, C. M., Cooper, S. J. B., and Duffield, G. A. (2001). Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii. Molecular Ecology 10, 175–183.
Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 11251796PubMed |

Gardner, M. G., Bull, C. M., and Cooper, S. J. B. (2002). High levels of genetic monogamy in the group‐living Australian lizard Egernia stokesii. Molecular Ecology 11, 1787–1794.
High levels of genetic monogamy in the group‐living Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 12207728PubMed |

Gardner, M. G., Hugall, A., Donnellan, S. C., Hutchinson, M., and Foster, R. (2008). Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae). Zoological Journal of the Linnean Society 154, 781–794.
Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae).Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Godfrey, S. S., Fenner, A. L., Donnellan, S. C., and Bull, C. M. (2012). Fine-scale spatial structuring as an inbreeding avoidance mechanism in the social skink Egernia stokesii. Australian Journal of Zoology 60, 272–277.
Fine-scale spatial structuring as an inbreeding avoidance mechanism in the social skink Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Pearson, S. K., Johnston, G. R., and Schwarz, M. P. (2016). Group living in squamate reptiles: a review of evidence for stable aggregations. Biological Reviews of the Cambridge Philosophical Society 91, 925–936.
Group living in squamate reptiles: a review of evidence for stable aggregations.Crossref | GoogleScholarGoogle Scholar | 26052742PubMed |

Garland, T., and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiological Zoology 67, 797–828.
Why not to do two-species comparative studies: limitations on inferring adaptation.Crossref | GoogleScholarGoogle Scholar |

Geffroy, B., and Wedekind, C. (2020). Effects of global warming on sex ratios in fishes. Journal of Fish Biology 97, 596–606.
Effects of global warming on sex ratios in fishes.Crossref | GoogleScholarGoogle Scholar | 32524610PubMed |

Georges, A., and Holleley, C. E. (2018). How does temperature determine sex? Science 360, 601–602.
How does temperature determine sex?Crossref | GoogleScholarGoogle Scholar | 29748270PubMed |

Greer, A. E. (1989). ‘The Biology and Evolution of Australian Lizards.’ (Surrey Beatty and Sons: Chipping Norton, Australia.)

Griffith, O. W., and Wagner, G. P. (2017). The placenta as a model for understanding the origin and evolution of vertebrate organs. Nature Ecology and Evolution 1, 0072.
The placenta as a model for understanding the origin and evolution of vertebrate organs.Crossref | GoogleScholarGoogle Scholar |

Griffith, O. W., Ujvari, B., Belov, K., and Thompson, M. B. (2013). Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 320, 465–470.
Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, Pseudemoia entrecasteauxii.Crossref | GoogleScholarGoogle Scholar | 23939756PubMed |

Griffith, O. W., Brandley, M. C., Belov, K., and Thompson, M. B. (2016). Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Development Genes and Evolution 226, 79–85.
Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii.Crossref | GoogleScholarGoogle Scholar | 26943808PubMed |

Griffith, O. W., Brandley, M. C., Whittington, C. M., Belov, K., and Thompson, M. B. (2017). Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. General and Comparative Endocrinology 244, 19–29.
Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes.Crossref | GoogleScholarGoogle Scholar | 27102939PubMed |

Grossen, C., Neuenschwander, S., and Perrin, N. (2011). Temperature-dependent turnovers in sex-determination mechanisms: a quantitative model. Evolution 65, 64–78.
Temperature-dependent turnovers in sex-determination mechanisms: a quantitative model.Crossref | GoogleScholarGoogle Scholar | 20722730PubMed |

Hacking, J., Stuart-Fox, D., and Gardner, M. (2017). Very low rate of multiple paternity detected in clutches of a wild agamid lizard. Australian Journal of Zoology 65, 328–334.
Very low rate of multiple paternity detected in clutches of a wild agamid lizard.Crossref | GoogleScholarGoogle Scholar |

Haenel, G. J., Smith, L. C., and John-Alder, H. B. (2003). Home-range analysis in Sceloporus undulatus. II. A test of spatial relationships and reproductive success. Copeia 2003, 113–123.
Home-range analysis in Sceloporus undulatus. II. A test of spatial relationships and reproductive success.Crossref | GoogleScholarGoogle Scholar |

Halliwell, B., Uller, T., Chapple, D., Gardner, M. G., Wapstra, E., and While, G. M. (2017a). Habitat saturation promotes delayed dispersal in a social reptile. Behavioral Ecology 28, 515–522.
Habitat saturation promotes delayed dispersal in a social reptile.Crossref | GoogleScholarGoogle Scholar |

Halliwell, B., Uller, T., Holland, B., and While, G. M. (2017b). Live bearing promotes the evolution of sociality in reptiles. Nature Communications 8, 2030.
Live bearing promotes the evolution of sociality in reptiles.Crossref | GoogleScholarGoogle Scholar | 29229907PubMed |

Harlow, P. (2004). Temperature-dependent sex determination in lizards. In ‘Temperature-dependent Sex Determination in Vertebrates’. (Eds N. Valenzuela and V. A. Lance.) pp. 42–52. (Smithsonian Books: Washington, DC.)

Head, M. L., Keogh, J. S., and Doughty, P. (2005). Male southern water skinks (Eulamprus heatwolei) use both visual and chemical cues to detect female sexual receptivity. Acta Ethologica 8, 79–85.
Male southern water skinks (Eulamprus heatwolei) use both visual and chemical cues to detect female sexual receptivity.Crossref | GoogleScholarGoogle Scholar |

Head, M. L., Doughty, P., Blomberg, S. P., and Keogh, J. S. (2008). Chemical mediation of reciprocal mother–offspring recognition in the southern water skink (Eulamprus heatwolei): chemical mediation of kin recognition in a lizard. Austral Ecology 33, 20–28.
Chemical mediation of reciprocal mother–offspring recognition in the southern water skink (Eulamprus heatwolei): chemical mediation of kin recognition in a lizard.Crossref | GoogleScholarGoogle Scholar |

Healey, M., and Olsson, M. (2009). Too big for his boots: are social costs keeping condition-dependent status signalling honest in an Australian lizard? Austral Ecology 34, 636–640.
Too big for his boots: are social costs keeping condition-dependent status signalling honest in an Australian lizard?Crossref | GoogleScholarGoogle Scholar |

Healey, M., Uller, T., and Olsson, M. (2007). Seeing red: morph-specific contest success and survival rates in a colour-polymorphic agamid lizard. Animal Behaviour 74, 337–341.
Seeing red: morph-specific contest success and survival rates in a colour-polymorphic agamid lizard.Crossref | GoogleScholarGoogle Scholar |

Hendrawan, K., Whittington, C. M., Brandley, M. C., Belov, K., and Thompson, M. B. (2017). The regulation of uterine proinflammatory gene expression during pregnancy in the live‐bearing lizard, Pseudemoia entrecasteauxii. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 328, 334–346.
The regulation of uterine proinflammatory gene expression during pregnancy in the live‐bearing lizard, Pseudemoia entrecasteauxii.Crossref | GoogleScholarGoogle Scholar | 28296138PubMed |

Herbert, J. F., Lindsay, L. A., Murphy, C. R., and Thompson, M. B. (2006). Calcium transport across the uterine epithelium of pregnant lizards. Herpetological Monographs 20, 205–211.
Calcium transport across the uterine epithelium of pregnant lizards.Crossref | GoogleScholarGoogle Scholar |

Hill, P. L., Burridge, C. P., Ezaz, T., and Wapstra, E. (2018). Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination. Genome Biology and Evolution 10, 1079–1087.
Conservation of sex-linked markers among conspecific populations of a viviparous skink, Niveoscincus ocellatus, exhibiting genetic and temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 29659810PubMed |

Hill, P., Shams, F., Burridge, C. P., Wapstra, E., and Ezaz, T. (2021a). Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells 10, 291.
Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae).Crossref | GoogleScholarGoogle Scholar | 33535518PubMed |

Hill, P. L., Wapstra, E., Ezaz, T., and Burridge, C. P. (2021b). Pleistocene divergence in the absence of gene flow among populations of a viviparous reptile with intraspecific variation in sex determination Ecology and Evolution 11, 5575–5583.
Pleistocene divergence in the absence of gene flow among populations of a viviparous reptile with intraspecific variation in sex determinationCrossref | GoogleScholarGoogle Scholar |

Holleley, C. E., O’Meally, D., Sarre, S. D., Marshall Graves, J. A., Ezaz, T., Matsubara, K., Azad, B., Zhang, X., and Georges, A. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523, 79–82.
Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.Crossref | GoogleScholarGoogle Scholar | 26135451PubMed |

Holleley, C. E., Sarre, S. D., O’Meally, D., and Georges, A. (2016). Sex reversal in reptiles: reproductive oddity or powerful driver of evolutionary change? Sexual Development 10, 279–287.
Sex reversal in reptiles: reproductive oddity or powerful driver of evolutionary change?Crossref | GoogleScholarGoogle Scholar | 27794577PubMed |

Hoops, D., Ullmann, J. F. P., Janke, A. L., Vidal-García, M., Gardner, T. S., Dwihapsari, Y., Merkling, T., Price, W. S., Endler, J. A., Whiting, M. J., and Keogh, J. S. (2017). Sexual selection predicts brain structure in dragon lizards. Journal of Evolutionary Biology 30, 244–256.
Sexual selection predicts brain structure in dragon lizards.Crossref | GoogleScholarGoogle Scholar | 27696584PubMed |

Houck, L. D. (2009). Pheromone communication in amphibians and reptiles. Annual Review of Physiology 71, 161–176.
Pheromone communication in amphibians and reptiles.Crossref | GoogleScholarGoogle Scholar | 18847365PubMed |

Huey, R. B., Pianka, E. R., and Schoener, T. W. (1983). ‘Lizard Ecology: Studies of a Model Organism.’ (Harvard University Press: Cambridge, MA.)

Hughes, W., Oldroyd, B., Beekman, M., and Ratnieks, F. (2008). Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216.
Ancestral monogamy shows kin selection is key to the evolution of eusociality.Crossref | GoogleScholarGoogle Scholar | 18511689PubMed |

Hutchinson, M. N., and Donnellan, S. C. (1992). Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae). Journal of Natural History 26, 215–264.
Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae).Crossref | GoogleScholarGoogle Scholar |

Huxley, J. (1955). Morphism and evolution. Heredity 9, 1–52.
Morphism and evolution.Crossref | GoogleScholarGoogle Scholar |

Itonaga, K., Jones, S. M., and Wapstra, E. (2012a). Effects of maternal basking and food quantity during gestation provide evidence for the selective advantage of matrotrophy in a viviparous lizard. PLoS One 7, e41835.
Effects of maternal basking and food quantity during gestation provide evidence for the selective advantage of matrotrophy in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar | 22848629PubMed |

Itonaga, K., Wapstra, E., and Jones, S. M. (2012b). A novel pattern of placental leucine transfer during mid to late gestation in a highly placentotrophic viviparous lizard. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 318, 308–315.
A novel pattern of placental leucine transfer during mid to late gestation in a highly placentotrophic viviparous lizard.Crossref | GoogleScholarGoogle Scholar | 22821866PubMed |

Jansson, N., Uller, T., and Olsson, M. (2005). Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males. Australian Journal of Zoology 53, 279–282.
Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males.Crossref | GoogleScholarGoogle Scholar |

Janzen, F. J., and Krenz, J. G. (2004). Phylogenetics: which was first, TSD or GSD? In ‘Temperature-Dependent Sex Determination in Vertebrates’. (Eds N. Valenzuela, and V. A. Lance) pp. 121–130. (Smithsonian Institution: Washington, DC.)

Janzen, F. J., and Phillips, P. C. (2006). Exploring the evolution of environmental sex determination, especially in reptiles. Journal of Evolutionary Biology 19, 1775–1784.
Exploring the evolution of environmental sex determination, especially in reptiles.Crossref | GoogleScholarGoogle Scholar | 17040374PubMed |

Jennions, M. D., and Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. Biological Reviews of the Cambridge Philosophical Society 75, 21–64.
Why do females mate multiply? A review of the genetic benefits.Crossref | GoogleScholarGoogle Scholar | 10740892PubMed |

Johnson, M. A., Cohen, R. E., Vandecar, J. R., and Wade, J. (2011). Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards. Physiology & Behavior 104, 437–445.
Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards.Crossref | GoogleScholarGoogle Scholar |

Jones, S. M. (2017). Variations upon a theme: Australian lizards provide insights into the endocrine control of vertebrate reproductive cycles. General and Comparative Endocrinology 244, 60–69.
Variations upon a theme: Australian lizards provide insights into the endocrine control of vertebrate reproductive cycles.Crossref | GoogleScholarGoogle Scholar | 26342969PubMed |

Jones, S. M., and Swain, R. (2000). Effects of exogenous FSH on follicular recruitment in a viviparous lizard Niveoscincus metallicus (Scincidae). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 487–493.
Effects of exogenous FSH on follicular recruitment in a viviparous lizard Niveoscincus metallicus (Scincidae).Crossref | GoogleScholarGoogle Scholar |

Jones, S. M., and Swain, R. (2006). Placental transfer of 3H-oleic acid in three species of viviparous lizards: a route for supplementation of embryonic fat bodies? Herpetological Monographs 20, 186–193.
Placental transfer of 3H-oleic acid in three species of viviparous lizards: a route for supplementation of embryonic fat bodies?Crossref | GoogleScholarGoogle Scholar |

Karlson, P., and Lüscher, M. (1959). ‘Pheromones’: a new term for a class of biologically active substances. Nature 183, 55–56.
‘Pheromones’: a new term for a class of biologically active substances.Crossref | GoogleScholarGoogle Scholar | 13622694PubMed |

Kearney, M. R. (2003). Why is sex so unpopular in the Australian desert? Trends in Ecology & Evolution 18, 605–607.
Why is sex so unpopular in the Australian desert?Crossref | GoogleScholarGoogle Scholar |

Keogh, J. S., Noble, D. W., Wilson, E. E., and Whiting, M. J. (2012). Activity predicts male reproductive success in a polygynous lizard. PLoS One 7, e38856.
Activity predicts male reproductive success in a polygynous lizard.Crossref | GoogleScholarGoogle Scholar | 22808016PubMed |

Keogh, J. S., Umbers, K. D., Wilson, E., Stapley, J., and Whiting, M. J. (2013). Influence of alternate reproductive tactics and pre- and postcopulatory sexual selection on paternity and offspring performance in a lizard. Behavioral Ecology and Sociobiology 67, 629–638.
Influence of alternate reproductive tactics and pre- and postcopulatory sexual selection on paternity and offspring performance in a lizard.Crossref | GoogleScholarGoogle Scholar |

King, D., and Green, B. (1999). ‘Goannas: The Biology of Varanid Lizards.’ (UNSW Press: Kensington, NSW.)

Kinlaw, A., and Grasmueck, M. (2012). Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: the burrowing cascade initiated by the gopher tortoise. Geomorphology 157–158, 108–121.
Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: the burrowing cascade initiated by the gopher tortoise.Crossref | GoogleScholarGoogle Scholar |

Klaczko, J., Ingram, T., and Losos, J. (2015). Genitals evolve faster than other traits in Anolis lizards. Journal of Zoology 295, 44–48.
Genitals evolve faster than other traits in Anolis lizards.Crossref | GoogleScholarGoogle Scholar |

Kvarnemo, C., and Simmons, L. W. (2013). Polyandry as a mediator of sexual selection before and after mating. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120042.
Polyandry as a mediator of sexual selection before and after mating.Crossref | GoogleScholarGoogle Scholar | 23339234PubMed |

Lack, D. (1947). The significance of clutch‐size. The Ibis 89, 302–352.
The significance of clutch‐size.Crossref | GoogleScholarGoogle Scholar |

LaDage, L. D., Gutzke, W. H., Simmons, R. A., and Ferkin, M. H. (2008). Multiple mating increases fecundity, fertility and relative clutch mass in the female leopard gecko (Eublepharis macularius). Ethology 114, 512–520.
Multiple mating increases fecundity, fertility and relative clutch mass in the female leopard gecko (Eublepharis macularius).Crossref | GoogleScholarGoogle Scholar |

Laird, M. K., Thompson, M. B., and Whittington, C. M. (2019). Facultative oviparity in a viviparous skink (Saiphos equalis). Biology Letters 15, 20180827.
Facultative oviparity in a viviparous skink (Saiphos equalis).Crossref | GoogleScholarGoogle Scholar | 30940025PubMed |

Laloi, D., Richard, M., Fédérici, P., Clobert, J., Teillac‐Deschamps, P., and Massot, M. (2009). Relationship between female mating strategy, litter success and offspring dispersal. Ecology Letters 12, 823–829.
Relationship between female mating strategy, litter success and offspring dispersal.Crossref | GoogleScholarGoogle Scholar | 19527273PubMed |

Laloi, D., Eizaguirre, C., Fédérici, P., and Massot, M. (2011). Female choice for heterozygous mates changes along successive matings in a lizard. Behavioural Processes 88, 149–154.
Female choice for heterozygous mates changes along successive matings in a lizard.Crossref | GoogleScholarGoogle Scholar | 21889973PubMed |

Le Galliard, J. F., Fitze, P. S., Ferriere, R., and Clobert, J. (2005). Sex ratio bias, male aggression, and population collapse in lizards. Proceedings of the National Academy of Sciences of the United States of America 102, 18231–18236.
Sex ratio bias, male aggression, and population collapse in lizards.Crossref | GoogleScholarGoogle Scholar | 16322105PubMed |

Lebas, N. (2001). Microsatellite determination of male reproductive success in a natural population of the territorial ornate dragon lizard, Ctenophorus ornatus. Molecular Ecology 10, 193–203.
Microsatellite determination of male reproductive success in a natural population of the territorial ornate dragon lizard, Ctenophorus ornatus.Crossref | GoogleScholarGoogle Scholar | 11251798PubMed |

Leu, S., Burzacott, D., Whiting, M., and Bull, C. M. (2015). Mate familiarity affects pairing behaviour in a long‐term monogamous lizard: evidence from detailed bio‐logging and a 31‐year field study. Ethology 121, 760–768.
Mate familiarity affects pairing behaviour in a long‐term monogamous lizard: evidence from detailed bio‐logging and a 31‐year field study.Crossref | GoogleScholarGoogle Scholar |

Liggins, G. C. (2000). The role of the hypothalamic–pituitary–adrenal axis in preparing the fetus for birth. American Journal of Obstetrics and Gynecology 182, 475–477.
The role of the hypothalamic–pituitary–adrenal axis in preparing the fetus for birth.Crossref | GoogleScholarGoogle Scholar | 10694355PubMed |

Linville, B. J., Stewart, J. R., Ecay, T. W., Herbert, J. F., Parker, S. L., and Thompson, M. B. (2010). Placental calcium provision in a lizard with prolonged oviductal egg retention. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 221–227.
Placental calcium provision in a lizard with prolonged oviductal egg retention.Crossref | GoogleScholarGoogle Scholar | 19727762PubMed |

Lovern, M. B., Holmes, M. M., and Wade, J. (2004). The green anole (Anolis carolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior. ILAR Journal 45, 54–64.
The green anole (Anolis carolinensis): a reptilian model for laboratory studies of reproductive morphology and behavior.Crossref | GoogleScholarGoogle Scholar | 14756155PubMed |

Lukas, D., and Clutton-Brock, T. (2012). Cooperative breeding and monogamy in mammalian societies. Proceedings. Biological Sciences 279, 2151–2156.
Cooperative breeding and monogamy in mammalian societies.Crossref | GoogleScholarGoogle Scholar | 22279167PubMed |

Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L., and Fitzpatrick, J. L. (2020). How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 375, 20200064.
How sperm competition shapes the evolution of testes and sperm: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Maderson, P. F. A. (1972). The structure and evolution of holocrine epidermal glands in sphaerodactyline and eublepharine gekkonid lizards. Copeia 1972, 559–571.
The structure and evolution of holocrine epidermal glands in sphaerodactyline and eublepharine gekkonid lizards.Crossref | GoogleScholarGoogle Scholar |

Madsen, T., Shine, R., Loman, J., and Håkansson, T. (1992). Why do female adders copulate so frequently? Nature 355, 440–441.
Why do female adders copulate so frequently?Crossref | GoogleScholarGoogle Scholar |

Magrath, R. D. (1990). Hatching asynchrony in altricial birds. Biological Reviews of the Cambridge Philosophical Society 65, 587–622.
Hatching asynchrony in altricial birds.Crossref | GoogleScholarGoogle Scholar |

Main, A. R., and Bull, C. M. (1996). Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii. Animal Behaviour 52, 193–200.
Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Manning, B. (2002). Notes on the captive breeding of the swamp skink (Egernia coventryi). Herpetofauna 32, 35–38.

Mannix, L. (2020). Doris the lady lizard now appears to be male, stunning scientists. The Sydney Morning Herald, 17 December 2020. Available at: https://www.smh.com.au/national/doris-the-lady-lizard-now-appears-to-be-male-stunning-scientists-20201217-p56obk.html

Martin, L. D., and Bennett, D. K. (1977). The burrows of the Miocene beaver Palaeocastor, western Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 22, 173–193.
The burrows of the Miocene beaver Palaeocastor, western Nebraska, USA.Crossref | GoogleScholarGoogle Scholar |

Martín, J., and López, P. (2011). Pheromones and reproduction in reptiles. In ‘Hormones and Reproduction of Vertebrates’. (Eds D. O. Norris, and K. H. Lopez.) pp. 141–167. (Academic Press: San Diego, CA.)

Martínez‐Torres, M., Rubio‐Morales, B., Piña‐Amado, J. J., and Luis, J. (2015). Hemipenes in females of the mexican viviparous lizard Barisia imbricata (Squamata: Anguidae): an example of heterochrony in sexual development. Evolution & Development 17, 270–277.
Hemipenes in females of the mexican viviparous lizard Barisia imbricata (Squamata: Anguidae): an example of heterochrony in sexual development.Crossref | GoogleScholarGoogle Scholar |

Mason, R. T., and Parker, M. R. (2010). Social behavior and pheromonal communication in reptiles. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 196, 729–749.
Social behavior and pheromonal communication in reptiles.Crossref | GoogleScholarGoogle Scholar | 20585786PubMed |

Masters, C., and Shine, R. (2003). Sociality in lizards: family structure in free-living King’s skinks Egernia kingii from southwestern Australia. Australian Zoologist 32, 377–380.
Sociality in lizards: family structure in free-living King’s skinks Egernia kingii from southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Mayerl, C., Baeckens, S., and Damme, R. V. (2015). Evolution and role of the follicular epidermal gland system in non-ophidian squamates. Amphibia-Reptilia 36, 185–206.
Evolution and role of the follicular epidermal gland system in non-ophidian squamates.Crossref | GoogleScholarGoogle Scholar |

Maynard Smith, J., and Szathmáry, E. (1997). ‘The Major Transitions in Evolution.’ (Oxford University Press: Oxford, UK.)

McDiarmid, R. W., Foster, M. S., Guyer, C., Gibbons, J. W., and Chernoff, N. (2012). ‘Reptile Biodiversity: Standard Methods for Inventory and Monitoring.’ (University of California Press: Berkeley, CA.)

McDiarmid, C. S., Friesen, C. R., Ballen, C., and Olsson, M. (2017). Sexual coloration and sperm performance in the Australian painted dragon lizard, Ctenophorus pictus. Journal of Evolutionary Biology 30, 1303–1312.
Sexual coloration and sperm performance in the Australian painted dragon lizard, Ctenophorus pictus.Crossref | GoogleScholarGoogle Scholar | 28425158PubMed |

McLean, C. A., Stuart-Fox, D., and Moussalli, A. (2014). Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard. Journal of Evolutionary Biology 27, 2123–2137.
Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard.Crossref | GoogleScholarGoogle Scholar | 25146412PubMed |

McLean, C. A., Stuart-Fox, D., and Moussalli, A. (2015). Environment, but not genetic divergence, influences geographic variation in colour morph frequencies in a lizard. BMC Evolutionary Biology 15, 156.
Environment, but not genetic divergence, influences geographic variation in colour morph frequencies in a lizard.Crossref | GoogleScholarGoogle Scholar | 26253642PubMed |

Meiri, S., Avila, L., Bauer, A. M., Chapple, D. G., Das, I., Doan, T. M., Doughty, P., Ellis, R., Grismer, L., Kraus, F., Morando, M., Oliver, P., Pincheira-Donoso, D., Ribeiro-Junior, M. A., Shea, G., Torres-Carvajal, O., Slavenko, A., and Roll, U. (2020). The global diversity and distribution of lizard clutch sizes. Global Ecology and Biogeography 29, 1515–1530.
The global diversity and distribution of lizard clutch sizes.Crossref | GoogleScholarGoogle Scholar |

Melville, J, Chapple, D. G., Keogh, J. S., Sumner, J, Amey, A, Bowles, P, et al (2021). A return-on-investment approach for prioritization of rigorous taxonomic research needed to inform responses to the biodiversity crisis. PLoS Biology 19, e3001210.
A return-on-investment approach for prioritization of rigorous taxonomic research needed to inform responses to the biodiversity crisis.Crossref | GoogleScholarGoogle Scholar | 34061821PubMed |

Mendonça, M., and Crews, D. (2001). Control of attractivity and receptivity in female red-sided garter snakes. Hormones and Behavior 40, 43–50.
Control of attractivity and receptivity in female red-sided garter snakes.Crossref | GoogleScholarGoogle Scholar | 11467883PubMed |

Mesquita, D. O., Costa, G. C., Colli, G. R., Costa, T. B., Shepard, D. B., Vitt, L. J., and Pianka, E. R. (2016). Life-history patterns of lizards of the world. American Naturalist 187, 689–705.
Life-history patterns of lizards of the world.Crossref | GoogleScholarGoogle Scholar |

Milstead, W. (1967). ‘Lizard Ecology: A Symposium.’ (University of Missouri Press: Columbia, MO.)

Mitchell, N. J., and Janzen, F. J. (2010). Temperature-dependent sex determination and contemporary climate change. Sexual Development 4, 129–140.
Temperature-dependent sex determination and contemporary climate change.Crossref | GoogleScholarGoogle Scholar | 20145383PubMed |

Mitchell, N. J., Kearney, M. R., Nelson, N. J., and Porter, W. P. (2008). Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? Proceedings of the Royal Society B: Biological Sciences 275, 2185–2193.
Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?Crossref | GoogleScholarGoogle Scholar | 18595840PubMed |

Mork, L., Czerwinski, M., and Capel, B. (2014). Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Developmental Biology 386, 264–271.
Predetermination of sexual fate in a turtle with temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 24316144PubMed |

Morrison, C., and Hero, J. M. (2003). Geographic variation in life‐history characteristics of amphibians: a review. Journal of Animal Ecology 72, 270–279.
Geographic variation in life‐history characteristics of amphibians: a review.Crossref | GoogleScholarGoogle Scholar |

Morrison, S., Scott Keogh, J., and Scott, I. (2002). Molecular determination of paternity in a natural population of the multiply mating polygynous lizard Eulamprus heatwolei. Molecular Ecology 11, 535–545.
Molecular determination of paternity in a natural population of the multiply mating polygynous lizard Eulamprus heatwolei.Crossref | GoogleScholarGoogle Scholar | 11918788PubMed |

Mouton, P. L. F. N. (2011). Aggregation behaviour of lizards in the arid western regions of South Africa. African Journal of Herpetology 60, 155–170.
Aggregation behaviour of lizards in the arid western regions of South Africa.Crossref | GoogleScholarGoogle Scholar |

Mouton, P. L. F. N., Van Rensburg, D. J., and Van Wyk, J. H. (2010). Epidermal glands in cordylid lizards, with special reference to generation glands. Zoological Journal of the Linnean Society 158, 312–324.
Epidermal glands in cordylid lizards, with special reference to generation glands.Crossref | GoogleScholarGoogle Scholar |

Mouton, P. F. N., Flemming, A. F., and Broeckhoven, C. (2014). Generation gland morphology in cordylid lizards: an evolutionary perspective. Journal of Morphology 275, 456–464.
Generation gland morphology in cordylid lizards: an evolutionary perspective.Crossref | GoogleScholarGoogle Scholar |

Munch, K., Noble, D., Budd, L., Row, A., Wapstra, E., and While, G. M. (2018). Maternal presence facilitates plasticity in offspring behavior: insights into the evolution of parental care. Behavioral Ecology 29, 1298–1306.
Maternal presence facilitates plasticity in offspring behavior: insights into the evolution of parental care.Crossref | GoogleScholarGoogle Scholar |

Murphy, C. R., Hosie, M. J., and Thompson, M. B. (2000). The plasma membrane transformation facilitates pregnancy in both reptiles and mammals. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 433–439.
The plasma membrane transformation facilitates pregnancy in both reptiles and mammals.Crossref | GoogleScholarGoogle Scholar |

Murphy, K., Hudson, S., and Shea, G. (2006). Reproductive seasonality of three cold-temperate viviparous skinks from southeastern Australia. Journal of Herpetology 40, 454–464.
Reproductive seasonality of three cold-temperate viviparous skinks from southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Murphy, B. F., Parker, S. L., Murphy, C. R., and Thompson, M. B. (2010). Angiogenesis of the uterus and chorioallantois in the eastern water skink Eulamprus quoyii. The Journal of Experimental Biology 213, 3340–3347.
Angiogenesis of the uterus and chorioallantois in the eastern water skink Eulamprus quoyii.Crossref | GoogleScholarGoogle Scholar | 20833927PubMed |

Murphy, B. F., Parker, S. L., Murphy, C. R., and Thompson, M. B. (2011). Placentation in the eastern water skink (Eulamprus quoyii): a placentome-like structure in a lecithotrophic lizard. Journal of Anatomy 218, 678–689.
Placentation in the eastern water skink (Eulamprus quoyii): a placentome-like structure in a lecithotrophic lizard.Crossref | GoogleScholarGoogle Scholar | 21434912PubMed |

Neaves, L., Wapstra, E., Birch, D., Girling, J. E., and Joss, J. M. P. (2006). Embryonic gonadal and sexual organ development in a small viviparous skink, Niveoscincus ocellatus. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 305A, 74–82.
Embryonic gonadal and sexual organ development in a small viviparous skink, Niveoscincus ocellatus.Crossref | GoogleScholarGoogle Scholar |

Niewiarowski, P. H., and Angilletta, M. J. (2008). Countergradient variation in embryonic growth and development: do embryonic and juvenile performances trade off? Functional Ecology 22, 895–901.
Countergradient variation in embryonic growth and development: do embryonic and juvenile performances trade off?Crossref | GoogleScholarGoogle Scholar |

Noble, D. W., Keogh, J. S., and Whiting, M. J. (2013). Multiple mating in a lizard increases fecundity but provides no evidence for genetic benefits. Behavioral Ecology 24, 1128–1137.
Multiple mating in a lizard increases fecundity but provides no evidence for genetic benefits.Crossref | GoogleScholarGoogle Scholar |

Nowicki, J., Pratchett, M., Walker, S., Coker, D., and O’Connell, L. (2020). Gene expression correlates of social evolution in coral reef butterflyfishes. Proceedings of the Royal Society B: Biological Sciences 287, 20200239.
Gene expression correlates of social evolution in coral reef butterflyfishes.Crossref | GoogleScholarGoogle Scholar | 32576103PubMed |

Numan, M. (2014). ‘Neurobiology of Social Behavior: Toward an Understanding of the Prosocial and Antisocial Brain.’ (Academic Press: New York, NY.)

O’Connell, L., Matthews, B., and Hofmann, H. (2012). Isotocin regulates paternal care in a monogamous cichlid fish. Hormones and Behavior 61, 725–733.
Isotocin regulates paternal care in a monogamous cichlid fish.Crossref | GoogleScholarGoogle Scholar | 22498693PubMed |

O’Connor, D., and Shine, R. (2003). Lizards in ‘nuclear families’: a novel reptilian social system in Egernia saxatilis (Scincidae). Molecular Ecology 12, 743–752.
Lizards in ‘nuclear families’: a novel reptilian social system in Egernia saxatilis (Scincidae).Crossref | GoogleScholarGoogle Scholar | 12675829PubMed |

O’Connor, D., and Shine, R. (2004). Parental care protects against infanticide in the lizard Egernia saxatilis (Scincidae). Animal Behaviour 68, 1361–1369.
Parental care protects against infanticide in the lizard Egernia saxatilis (Scincidae).Crossref | GoogleScholarGoogle Scholar |

Olsson, M. (1995). Forced copulation and costly female resistance behavior in the Lake Eyre dragon, Ctenophorus maculosus. Herpetologica 51, 19–24.

Olsson, M. (2001). No female mate choice in Mallee dragon lizards, Ctenophorus fordi. Evolutionary Ecology 15, 129–141.
No female mate choice in Mallee dragon lizards, Ctenophorus fordi.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., and Madsen, T. (1995). Female choice on male quantitative traits in lizards – why is it so rare? Behavioral Ecology and Sociobiology 36, 179–184.
Female choice on male quantitative traits in lizards – why is it so rare?Crossref | GoogleScholarGoogle Scholar |

Olsson, M., and Shine, R. (1998). Chemosensory mate recognition may facilitate prolonged mate guarding by male snow skinks, Niveoscincus microlepidotus. Behavioral Ecology and Sociobiology 43, 359–363.
Chemosensory mate recognition may facilitate prolonged mate guarding by male snow skinks, Niveoscincus microlepidotus.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Gullberg, A., Shine, R., Madsen, T., and Tegelström, H. (1996a). Paternal genotype influences incubation period, offspring size, and offspring shape in an oviparous reptile. Evolution 50, 1328–1333.
Paternal genotype influences incubation period, offspring size, and offspring shape in an oviparous reptile.Crossref | GoogleScholarGoogle Scholar | 28565274PubMed |

Olsson, M., Shine, R., Madsen, T., Gullberg, A., and Tegelström, H. (1996b). Sperm selection by females. Nature 383, 585.
Sperm selection by females.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Shine, R., Madsen, T., Gullberg, A., and Tegelström, H. (1997). Sperm choice by females. Trends in Ecology & Evolution 12, 445–446.
Sperm choice by females.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Madsen, T., Ujvari, B., and Wapstra, E. (2004). Fecundity and MHC affects ejaculation tactics and paternity bias in sand lizards. Evolution 58, 906–909.
Fecundity and MHC affects ejaculation tactics and paternity bias in sand lizards.Crossref | GoogleScholarGoogle Scholar | 15154566PubMed |

Olsson, M., Ujvari, B., Wapstra, E., Madsen, T., Shine, R., and Bensch, S. (2005). Does mate guarding prevent rival mating in snow skinks? A test using AFLP. Herpetologica 61, 389–394.
Does mate guarding prevent rival mating in snow skinks? A test using AFLP.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Healey, M., and Astheimer, L. (2007a). Afternoon T: testosterone level is higher in red than yellow male polychromatic lizards. Physiology & Behavior 91, 531–534.
Afternoon T: testosterone level is higher in red than yellow male polychromatic lizards.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Schwartz, T., Uller, T., and Healey, M. (2007b). Sons are made from old stores: sperm storage effects on sex ratio in a lizard. Biology Letters 3, 491–493.
Sons are made from old stores: sperm storage effects on sex ratio in a lizard.Crossref | GoogleScholarGoogle Scholar | 17650477PubMed |

Olsson, M., Healey, M., Wapstra, E., and Uller, T. (2009a). Testing the quality of a carrier: a field experiment on lizard signalers. Evolution 63, 695.
Testing the quality of a carrier: a field experiment on lizard signalers.Crossref | GoogleScholarGoogle Scholar | 19154354PubMed |

Olsson, M., Schwartz, T., Uller, T., and Healey, M. (2009b). Effects of sperm storage and male colour on probability of paternity in a polychromatic lizard. Animal Behaviour 77, 419–424.
Effects of sperm storage and male colour on probability of paternity in a polychromatic lizard.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Wapstra, E., and Friesen, C. (2018a). Ectothermic telomeres: it’s time they came in from the cold. Philosophical Transactions of the Royal Society B: Biological Sciences 373, 20160449.
Ectothermic telomeres: it’s time they came in from the cold.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Wapstra, E., and Friesen, C. R. (2018b). Evolutionary ecology of telomeres: a review. Annals of the New York Academy of Sciences 1422, 5–28.
Evolutionary ecology of telomeres: a review.Crossref | GoogleScholarGoogle Scholar | 28984363PubMed |

Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K., and Martins, E. P. (2013). Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behavioral Ecology and Sociobiology 67, 1513–1522.
Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards.Crossref | GoogleScholarGoogle Scholar |

Oufiero, C. E., and Angilletta, M. J. (2006). Convergent evolution of embryonic growth and development in the eastern fence lizard (Sceloporus undulatus). Evolution 60, 1066–1075.
Convergent evolution of embryonic growth and development in the eastern fence lizard (Sceloporus undulatus).Crossref | GoogleScholarGoogle Scholar |

Palmer, D. H., Rogers, T. F., Dean, R., and Wright, A. E. (2019). How to identify sex chromosomes and their turnover. Molecular Ecology 28, 4709–4724.
How to identify sex chromosomes and their turnover.Crossref | GoogleScholarGoogle Scholar | 31538682PubMed |

Parker, G. A. (1970). Sperm competition and its evolutionary consequences in insects. Biological Reviews of the Cambridge Philosophical Society 45, 525–567.
Sperm competition and its evolutionary consequences in insects.Crossref | GoogleScholarGoogle Scholar |

Parker, G. A. (1998). Sperm competition and the evolution of ejaculates: towards a theory base. In ‘Sperm Competition and Sexual Selection’. (Eds T. R. Birkhead, and A. P. Møller.) pp. 3–49. (Academic Press: San Deigo, CA.)

Parker, M. R., and Mason, R. T. (2012). How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes. The Journal of Experimental Biology 215, 723–730.
How to make a sexy snake: estrogen activation of female sex pheromone in male red-sided garter snakes.Crossref | GoogleScholarGoogle Scholar | 22323194PubMed |

Parker, M. R., and Mason, R. T. (2014). A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes. Hormones and Behavior 66, 509–516.
A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes.Crossref | GoogleScholarGoogle Scholar | 25058443PubMed |

Parker, G. A., and Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews of the Cambridge Philosophical Society 85, 897–934.
| 20560928PubMed |

Parker, S. L., Manconi, F., Murphy, C. R., and Thompson, M. B. (2010a). Uterine and placental angiogenesis in the Australian skinks, Ctenotus taeniolatus, and Saiphos equalis. The Anatomical Record 293, 829–838.
Uterine and placental angiogenesis in the Australian skinks, Ctenotus taeniolatus, and Saiphos equalis.Crossref | GoogleScholarGoogle Scholar | 20432373PubMed |

Parker, S. L., Murphy, C. R., and Thompson, M. B. (2010b). Uterine angiogenesis in squamate reptiles: implications for the evolution of viviparity. Herpetological Conservation and Biology 5, 330–334.

Paul, J. W., Kemsley, J. O., Butler, T. A., Tolosa, J. M., Thompson, M. B., Smith, R., and Whittington, C. M. (2020). A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 190, 49–62.
A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards.Crossref | GoogleScholarGoogle Scholar | 31858229PubMed |

Pearson, S. K., Godfrey, S. S., Bull, C. M., and Gardner, M. (2016). Larger lizards live longer in the group-living Egernia stokesii. Australian Journal of Zoology 64, 182–191.
Larger lizards live longer in the group-living Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Peck, S., Gardner, M. G., Seddon, J. M., and Baxter, G. (2016). Life-history characteristics of the yakka skink, Egernia rugosa, indicate long-term social structure. Australian Journal of Zoology 64, 335–343.
Life-history characteristics of the yakka skink, Egernia rugosa, indicate long-term social structure.Crossref | GoogleScholarGoogle Scholar |

Pen, I., Uller, T., Feldmeyer, B., Harts, A., While, G. M., and Wapstra, E. (2010). Climate-driven population divergence in sex-determining systems. Nature 468, 436–438.
Climate-driven population divergence in sex-determining systems.Crossref | GoogleScholarGoogle Scholar | 20981009PubMed |

Pennell, M. W., Mank, J. E., and Peichel, C. L. (2018). Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology 27, 3950–3963.
Transitions in sex determination and sex chromosomes across vertebrate species.Crossref | GoogleScholarGoogle Scholar | 29451715PubMed |

Peterson, C. C., and Husak, J. F. (2006). Locomotor performance and sexual selection: individual variation in sprint speed of collared lizards (Crotaphytus collaris). Copeia 2006, 216–224.
Locomotor performance and sexual selection: individual variation in sprint speed of collared lizards (Crotaphytus collaris).Crossref | GoogleScholarGoogle Scholar |

Pianka, E. R. (1969). Habitat specificity, speciation, and species density in Australian desert lizards. Ecology 50, 498–502.
Habitat specificity, speciation, and species density in Australian desert lizards.Crossref | GoogleScholarGoogle Scholar |

Pianka, E. R. (1989). Desert lizard diversity: additional comments and some data. American Naturalist 134, 344–364.
Desert lizard diversity: additional comments and some data.Crossref | GoogleScholarGoogle Scholar |

Pieau, C. (1972). Effects de la temperature sur le developpement des glandes genitales chez les embyons de deux Chelonians, Testudo greca L. et Emys orbicularis L. Comptes rendus de l’Académie des Sciences (Paris) 274, 719–722.

Pizzari, T., and Wedell, N. (2013). The polyandry revolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120041.
The polyandry revolution.Crossref | GoogleScholarGoogle Scholar | 23339233PubMed |

Platel, M. R. (1979). Brain weight–body weight relationships. In ‘Biology of the Reptilia. Vol. 9’. (Eds C. Gans, R. G. Northcutt, and P. Ulinski.) pp. 147–171. (Academic Press: London.)

Pokorna, M., and Kratochvil, L. (2009). Phylogeny of sex-determining mechanisms in squamate reptiles are sex chromosomes an evolutionary trap? Zoological Journal of the Linnean Society 156, 168–183.
Phylogeny of sex-determining mechanisms in squamate reptiles are sex chromosomes an evolutionary trap?Crossref | GoogleScholarGoogle Scholar |

Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F., and Meiri, S. (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19, 386–396.
Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds.Crossref | GoogleScholarGoogle Scholar |

Qualls, C. P., and Shine, R. (1998). Lerista bougainvillii, a case study for the evolution of viviparity in reptiles. Journal of Evolutionary Biology 11, 63–78.
Lerista bougainvillii, a case study for the evolution of viviparity in reptiles.Crossref | GoogleScholarGoogle Scholar |

Quinn, A. E., Georges, A., Sarre, S. D., Guarino, F., Ezaz, T., and Graves, J. A. M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316, 411.
Temperature sex reversal implies sex gene dosage in a reptile.Crossref | GoogleScholarGoogle Scholar | 17446395PubMed |

Radder, R. S., Quinn, A. E., Georges, A., Sarre, S. D., and Shine, R. (2008). Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biology Letters 4, 176–178.
Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard.Crossref | GoogleScholarGoogle Scholar | 18089519PubMed |

Rankin, D., and Kokko, H. (2007). Do males matter? The role of males in population dynamics. Oikos 116, 335–348.
Do males matter? The role of males in population dynamics.Crossref | GoogleScholarGoogle Scholar |

Rankin, K. J., McLean, C. A., Kemp, D. J., and Stuart-Fox, D. (2016). The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evolutionary Biology 16, 179.
The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii.Crossref | GoogleScholarGoogle Scholar | 27600682PubMed |

Riley, J. L., Noble, D. W., Byrne, R. W., and Whiting, M. J. (2017). Early social environment influences the behaviour of a family-living lizard. Royal Society Open Science 4, 161082.
Early social environment influences the behaviour of a family-living lizard.Crossref | GoogleScholarGoogle Scholar | 28573001PubMed |

Robert, K. A., and Thompson, M. B. (2001). Sex determination. Viviparous lizard selects sex of embryos. Nature 412, 698–699.
Sex determination. Viviparous lizard selects sex of embryos.Crossref | GoogleScholarGoogle Scholar | 11507628PubMed |

Rollings, N., Friesen, C. R., Sudyka, J., Whittington, C., Giraudeau, M., Wilson, M., and Olsson, M. (2017). Telomere dynamics in a lizard with morph-specific reproductive investment and self-maintenance. Ecology and Evolution 7, 5163–5169.
Telomere dynamics in a lizard with morph-specific reproductive investment and self-maintenance.Crossref | GoogleScholarGoogle Scholar | 28770056PubMed |

Romero-Diaz, C., Campos, S. M., Herrmann, M. A., Soini, H. A., Novotny, M. V., Hews, D. K., and Martins, E. P. (2021). Composition and compound proportions affect the response to complex chemical signals in a spiny lizard. Behavioral Ecology and Sociobiology 75, 42.
Composition and compound proportions affect the response to complex chemical signals in a spiny lizard.Crossref | GoogleScholarGoogle Scholar |

Rubenstein, D. R., and Abbot, P. (2017). ‘Comparative Social Evolution.’ (Cambridge University Press: Cambridge, UK.)

Ruiz-Monachesi, M. R., Paz, A., and Quipildor, M. (2019). Hemipenes eversion behavior: a new form of communication in two Liolaemus lizards (Iguania: Liolaemidae). Canadian Journal of Zoology 97, 187–194.
Hemipenes eversion behavior: a new form of communication in two Liolaemus lizards (Iguania: Liolaemidae).Crossref | GoogleScholarGoogle Scholar |

Sánchez‐Martínez, P. M., Ramírez‐Pinilla, M. P., and Miranda‐Esquivel, D. R. (2007). Comparative histology of the vaginal–cloacal region in Squamata and its phylogenetic implications. Acta Zoologica 88, 289–307.
Comparative histology of the vaginal–cloacal region in Squamata and its phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |

Sarre, S. D., Georges, A., and Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26, 639–645.
The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.Crossref | GoogleScholarGoogle Scholar | 15170861PubMed |

Sarre, S. D., Ezaz, T., and Georges, A. (2011). Transitions between sex-determining systems in reptiles and amphibians. Annual Review of Genomics and Human Genetics 12, 391–406.
Transitions between sex-determining systems in reptiles and amphibians.Crossref | GoogleScholarGoogle Scholar | 21801024PubMed |

Schofield, J., Gardner, M. G., Fenner, A. L., and Bull, C. M. (2014). Promiscuous mating in the endangered Australian lizard Tiliqua adelaidensis: a potential windfall for its conservation. Conservation Genetics 15, 177–185.
Promiscuous mating in the endangered Australian lizard Tiliqua adelaidensis: a potential windfall for its conservation.Crossref | GoogleScholarGoogle Scholar |

Schwanz, L. E., Georges, A., Holleley, C. E., and Sarre, S. D. (2020). Climate change, sex reversal and lability of sex‐determining systems. Journal of Evolutionary Biology 33, 270–281.
Climate change, sex reversal and lability of sex‐determining systems.Crossref | GoogleScholarGoogle Scholar | 31951035PubMed |

Schwenk, K. (1985). Occurrence, distribution and functional significance of taste buds in lizards. Copeia 1985, 91–101.
Occurrence, distribution and functional significance of taste buds in lizards.Crossref | GoogleScholarGoogle Scholar |

Schwenk, K. (1993). Are geckos olfactory specialists? Journal of Zoology 229, 289–302.
Are geckos olfactory specialists?Crossref | GoogleScholarGoogle Scholar |

Schwenk, K. (1995). Of tongues and noses: chemoreception in lizards and snakes. Trends in Ecology & Evolution 10, 7–12.
Of tongues and noses: chemoreception in lizards and snakes.Crossref | GoogleScholarGoogle Scholar |

Scott, M. L., Whiting, M. J., Webb, J. K., and Shine, R. (2013). Chemosensory discrimination of social cues mediates space use in snakes, Cryptophis nigrescens (Elapidae). Animal Behaviour 85, 1493–1500.
Chemosensory discrimination of social cues mediates space use in snakes, Cryptophis nigrescens (Elapidae).Crossref | GoogleScholarGoogle Scholar |

Scott, M. L., Llewelyn, J., Higgie, M., Hoskin, C. J., Pike, K., and Phillips, B. L. (2015). Chemoreception and mating behaviour of a tropical Australian skink. Acta Ethologica 18, 283–293.
Chemoreception and mating behaviour of a tropical Australian skink.Crossref | GoogleScholarGoogle Scholar |

Shine, R. (1988). Parental care in reptiles In ‘Biology of the Reptilia. Vol. 16’. (Eds C. Gans, and R. Huey.) pp. 275–330. (Liss: New York.)

Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. American Naturalist 145, 809–823.
A new hypothesis for the evolution of viviparity in reptiles.Crossref | GoogleScholarGoogle Scholar |

Shine, R. (1999). Why is sex determined by nest temperature in many reptiles? Trends in Ecology & Evolution 14, 186–189.
Why is sex determined by nest temperature in many reptiles?Crossref | GoogleScholarGoogle Scholar |

Shine, R. (2005). All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behavioral Ecology and Sociobiology 57, 591–598.
All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae).Crossref | GoogleScholarGoogle Scholar |

Shine, R., Elphick, M. J., and Harlow, P. S. (1995). Sisters like it hot. Nature 378, 451–452.
Sisters like it hot.Crossref | GoogleScholarGoogle Scholar |

Shine, R., Elphick, M. J., and Donnellan, S. (2002a). Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecology Letters 5, 486–489.
Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population.Crossref | GoogleScholarGoogle Scholar |

Shine, R., Reed, R. N., Shetty, S., Lemaster, M., and Mason, R. T. (2002b). Reproductive isolating mechanisms between two sympatric sibling species of sea snakes. Evolution 56, 1655–1662.
Reproductive isolating mechanisms between two sympatric sibling species of sea snakes.Crossref | GoogleScholarGoogle Scholar | 12353758PubMed |

Siegel, D. S., Trauth, S. E., Rheubert, J. L., Rabe, B., Ruopp, B., Miralles, A., Murray, C. M., and Aldridge, R. D. (2014). Novel cloacal glands in snakes: the phylogenetic distribution of ventral urodaeal glands in Thamnophiini. Herpetologica 70, 279–289.
Novel cloacal glands in snakes: the phylogenetic distribution of ventral urodaeal glands in Thamnophiini.Crossref | GoogleScholarGoogle Scholar |

Simmons, L. W. (2014). Sexual selection and genital evolution. Austral Entomology 53, 1–17.
Sexual selection and genital evolution.Crossref | GoogleScholarGoogle Scholar |

Sinervo, B., and Lively, C. M. (1996). The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243.
The rock–paper–scissors game and the evolution of alternative male strategies.Crossref | GoogleScholarGoogle Scholar |

Sinervo, B., Méndez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J., and Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899.
Erosion of lizard diversity by climate change and altered thermal niches.Crossref | GoogleScholarGoogle Scholar | 20466932PubMed |

Sinn, D. L., While, G. M., and Wapstra, E. (2008). Maternal care in a social lizard: links between female aggression and offspring fitness. Animal Behaviour 76, 1249–1257.
Maternal care in a social lizard: links between female aggression and offspring fitness.Crossref | GoogleScholarGoogle Scholar |

Skeels, A., Esquerré, D., and Cardillo, M. (2020). Alternative pathways to diversity across ecologically distinct lizard radiations. Global Ecology and Biogeography 29, 454–469.
Alternative pathways to diversity across ecologically distinct lizard radiations.Crossref | GoogleScholarGoogle Scholar |

Smith, R. M. (1987). Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 60, 155–169.
Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa.Crossref | GoogleScholarGoogle Scholar |

Smith, S. A., and Shine, R. (1997). Intraspecific variation in reproductive mode within the scincid lizard Saiphos equalis. Australian Journal of Zoology 45, 435–445.
Intraspecific variation in reproductive mode within the scincid lizard Saiphos equalis.Crossref | GoogleScholarGoogle Scholar |

Somaweera, R., Nifong, J., Rosenblatt, A., Brien, M. L., Combrink, X., Elsey, R. M., Grigg, G., Magnusson, W. E., Mazzotti, F. J., and Pearcy, A. (2020). The ecological importance of crocodylians: towards evidence‐based justification for their conservation. Biological Reviews of the Cambridge Philosophical Society 95, 936–959.
The ecological importance of crocodylians: towards evidence‐based justification for their conservation.Crossref | GoogleScholarGoogle Scholar | 32154985PubMed |

Somma, L. A. (2003). ‘Parental Behavior in Lepidosaurian and Testudinian Reptiles: a Literature Survey.’ (Krieger Publishing Company: Malabar.)

Stapley, J., and Keogh, J. S. (2005). Behavioral syndromes influence mating systems: floater pairs of a lizard have heavier offspring. Behavioral Ecology 16, 514–520.
Behavioral syndromes influence mating systems: floater pairs of a lizard have heavier offspring.Crossref | GoogleScholarGoogle Scholar |

Stapley, J., Hayes, C. M., and Scott Keogh, J. (2003). Population genetic differentiation and multiple paternity determined by novel microsatellite markers from the mountain log skink (Pseudemoia entrecasteauxii). Molecular Ecology Notes 3, 291–293.
Population genetic differentiation and multiple paternity determined by novel microsatellite markers from the mountain log skink (Pseudemoia entrecasteauxii).Crossref | GoogleScholarGoogle Scholar |

Steele, A. L., Wibbels, T., and Warner, D. A. (2018). Revisiting the first report of temperature-dependent sex determination in a vertebrate, the African redhead agama. Journal of Zoology 306, 16–22.
Revisiting the first report of temperature-dependent sex determination in a vertebrate, the African redhead agama.Crossref | GoogleScholarGoogle Scholar |

Stenning, M. J. (1996). Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends in Ecology & Evolution 11, 243–246.
Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses.Crossref | GoogleScholarGoogle Scholar |

Stewart, J. R. (1989). Facultative placentotrophy and the evolution of squamate placentation: quality of eggs and neonates in Virginia striatula. American Naturalist 133, 111–137.
Facultative placentotrophy and the evolution of squamate placentation: quality of eggs and neonates in Virginia striatula.Crossref | GoogleScholarGoogle Scholar |

Stewart, J. R., and Thompson, M. B. (2004). Placental ontogeny of the Tasmanian scincid lizard, Niveoscincus ocellatus (Reptilia: Squamata). Journal of Morphology 259, 214–237.
Placental ontogeny of the Tasmanian scincid lizard, Niveoscincus ocellatus (Reptilia: Squamata).Crossref | GoogleScholarGoogle Scholar | 14755752PubMed |

Stienen, E. W., and Brenninkmeijer, A. (2006). Effect of brood size and hatching sequence on prefledging mortality of sandwich terns: why lay two eggs? Journal of Ornithology 147, 520–530.
Effect of brood size and hatching sequence on prefledging mortality of sandwich terns: why lay two eggs?Crossref | GoogleScholarGoogle Scholar |

Stoleson, S. H., and Beissinger, S. R. (1995). Hatching asynchrony and the onset of incubation in birds, revisited. Current Ornithology 12, 191–270.
Hatching asynchrony and the onset of incubation in birds, revisited.Crossref | GoogleScholarGoogle Scholar |

Stow, A., and Sunnucks, P. (2004). High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 419–430.
High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat.Crossref | GoogleScholarGoogle Scholar | 14717896PubMed |

Stow, A. J., Sunnucks, P., Briscoe, D. A., and Gardner, M. G. (2001). The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Molecular Ecology 10, 867–878.
The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites.Crossref | GoogleScholarGoogle Scholar | 11348496PubMed |

Stuart-Fox, D., Aulsebrook, A., Rankin, K., Dong, C., and McLean, C. (2021). Convergence and divergence in lizard colour polymorphisms. Biological Reviews of the Cambridge Philosophical Society 96, 289–309.
Convergence and divergence in lizard colour polymorphisms.Crossref | GoogleScholarGoogle Scholar | 33029910PubMed |

Sullivan, B. K., and Kwiatkowski, M. A. (2007). Courtship displays in anurans and lizards: theoretical and empirical contributions to our understanding of costs and selection on males due to female choice. Functional Ecology 21, 666–675.
Courtship displays in anurans and lizards: theoretical and empirical contributions to our understanding of costs and selection on males due to female choice.Crossref | GoogleScholarGoogle Scholar |

Sun, B. J., Li, S. R., Xu, X. F., Zhao, W. G., Luo, L. G., Ji, X., and Du, W. G. (2013). Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteri and Eremias argus). Oecologia 172, 645–652.
Different mechanisms lead to convergence of reproductive strategies in two lacertid lizards (Takydromus wolteri and Eremias argus).Crossref | GoogleScholarGoogle Scholar | 23152168PubMed |

Svensson, E. I., Willink, B., Duryea, M. C., and Lancaster, L. T. (2020). Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism. Ecology Letters 23, 149–159.
Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism.Crossref | GoogleScholarGoogle Scholar | 31692246PubMed |

Swain, R., and Jones, S. M. (1997). Maternal–fetal transfer of 3H-labelled leucine in the viviparous lizard Niveoscincus metallicus (Scincidae: Lygosominae). The Journal of Experimental Zoology 277, 139–145.
Maternal–fetal transfer of 3H-labelled leucine in the viviparous lizard Niveoscincus metallicus (Scincidae: Lygosominae).Crossref | GoogleScholarGoogle Scholar |

Swain, R., and Jones, S. M. (2000). Facultative placentotrophy: half-way house or strategic solution? Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 441–451.
Facultative placentotrophy: half-way house or strategic solution?Crossref | GoogleScholarGoogle Scholar |

Taylor, M. L., Price, T. A. R., and Wedell, N. (2014). Polyandry in nature: a global analysis. Trends in Ecology & Evolution 29, 376–383.
Polyandry in nature: a global analysis.Crossref | GoogleScholarGoogle Scholar |

Teasdale, L. C., Stevens, M., and Stuart-Fox, D. (2013). Discrete colour polymorphism in the tawny dragon lizard (Ctenophorus decresii) and differences in signal conspicuousness among morphs. Journal of Evolutionary Biology 26, 1035–1046.
Discrete colour polymorphism in the tawny dragon lizard (Ctenophorus decresii) and differences in signal conspicuousness among morphs.Crossref | GoogleScholarGoogle Scholar | 23495663PubMed |

Telemeco, R. S. (2015). Sex determination in southern alligator lizards (Elgaria multicarinata; Anguidae). Herpetologica 71, 8–11.
Sex determination in southern alligator lizards (Elgaria multicarinata; Anguidae).Crossref | GoogleScholarGoogle Scholar |

Thompson, J. (1977). The transfer of amino acids across the placenta of a viviparous lizard, Sphenomorphus quoyii. Theriogenology 8, 158.
The transfer of amino acids across the placenta of a viviparous lizard, Sphenomorphus quoyii.Crossref | GoogleScholarGoogle Scholar |

Thompson, J. (1981). A study of the sources of nutrients for embyronic development in a viviparous lizard, Sphenomorphus quoyii. Comparative Biochemistry and Physiology. Part A, Physiology 70, 509–518.
A study of the sources of nutrients for embyronic development in a viviparous lizard, Sphenomorphus quoyii.Crossref | GoogleScholarGoogle Scholar |

Thompson, M. B., and Speake, B. K. (2006). A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 176, 179–189.
A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta.Crossref | GoogleScholarGoogle Scholar | 16333627PubMed |

Thompson, M. B., Stewart, J. R., and Speake, B. K. (2000). Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 127, 469–479.
Comparison of nutrient transport across the placenta of lizards differing in placental complexity.Crossref | GoogleScholarGoogle Scholar |

Thornhill, R. (1983). Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. American Naturalist 122, 765–788.
Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps.Crossref | GoogleScholarGoogle Scholar |

Tinkle, D. W., and Gibbons, J. W. (1977). ‘The Distribution and Evolution of Viviparity in Reptiles.’ (Museum of Zoology, University of Michigan: Ann Arbor, MI.)

Tinkle, D. W., Wilbur, H. M., and Tilley, S. G. (1970). Evolutionary strategies in lizard reproduction. Evolution 24, 55–74.
Evolutionary strategies in lizard reproduction.Crossref | GoogleScholarGoogle Scholar | 28563006PubMed |

Tokunaga, S. (1985). Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia). Development, Growth & Differentiation 27, 117–120.
Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia).Crossref | GoogleScholarGoogle Scholar |

Uetz, P. (2010). The original descriptions of reptiles. Zootaxa 2334, 59–68.
The original descriptions of reptiles.Crossref | GoogleScholarGoogle Scholar |

Uller, T., and Olsson, M. (2005). Multiple copulations in natural populations of lizards: evidence for the fertility assurance hypothesis. Behaviour 142, 45–56.
Multiple copulations in natural populations of lizards: evidence for the fertility assurance hypothesis.Crossref | GoogleScholarGoogle Scholar |

Uller, T., and Olsson, M. (2006). No seasonal sex-ratio shift despite sex-specific fitness returns of hatching date in a lizard with genotypic sex determination. Evolution 60, 2131–2136.
No seasonal sex-ratio shift despite sex-specific fitness returns of hatching date in a lizard with genotypic sex determination.Crossref | GoogleScholarGoogle Scholar | 17133869PubMed |

Uller, T., and Olsson, M. (2008). Multiple paternity in reptiles: patterns and processes. Molecular Ecology 17, 2566–2580.
Multiple paternity in reptiles: patterns and processes.Crossref | GoogleScholarGoogle Scholar | 18452517PubMed |

Uller, T., Pen, I., Wapstra, E., Beukeboom, L. W., and Komdeur, J. (2007). The evolution of sex ratios and sex-determining systems. Trends in Ecology & Evolution 22, 292–297.
The evolution of sex ratios and sex-determining systems.Crossref | GoogleScholarGoogle Scholar |

Uller, T., Stuart-Fox, D., and Olsson, M. (2010). Evolution of primary sexual characters in reptiles. In ‘Evolution of Primary Sexual Characters in Animals’. (Eds J. L. Leonard, and A. Córdoba-Aguilar.) pp. 425–452. (Oxford University Press: Oxford.)

Valdecantos, S., and Lobo, F. (2015). First report of hemiclitores in females of South American liolaemid lizards. Journal of Herpetology 49, 291–294.
First report of hemiclitores in females of South American liolaemid lizards.Crossref | GoogleScholarGoogle Scholar |

Valenzuela, N., Literman, R., Neuwald, J. L., Mizoguchi, B., Iverson, J. B., Riley, J. L., and Litzgus, J. D. (2019). Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination. Scientific Reports 9, 4254.
Extreme thermal fluctuations from climate change unexpectedly accelerate demographic collapse of vertebrates with temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 30862793PubMed |

Van Dyke, J. U., Griffith, O. W., and Thompson, M. B. (2014). High food abundance permits the evolution of placentotrophy: evidence from a placental lizard, Pseudemoia entrecasteauxii. American Naturalist 184, 198–210.
High food abundance permits the evolution of placentotrophy: evidence from a placental lizard, Pseudemoia entrecasteauxii.Crossref | GoogleScholarGoogle Scholar |

Van Dyke, J. U., Lindsay, L. A., Murphy, C. R., and Thompson, M. B. (2015). Carbonic anhydrase II is found in the placenta of a viviparous, matrotrophic lizard and likely facilitates embryo–maternal CO2 transport. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 324, 636–646.
Carbonic anhydrase II is found in the placenta of a viviparous, matrotrophic lizard and likely facilitates embryo–maternal CO2 transport.Crossref | GoogleScholarGoogle Scholar | 26055428PubMed |

van Wyk, J. H., and Mouton, P. F. N. (1992). Glandular epidermal structures in cordylid lizards. Amphibia-Reptilia 13, 1–12.
Glandular epidermal structures in cordylid lizards.Crossref | GoogleScholarGoogle Scholar |

Vicoso, B., Kaiser, V. B., and Bachtrog, D. (2013). Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America 110, 6453–6458.
Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.Crossref | GoogleScholarGoogle Scholar | 23547111PubMed |

Viets, B. E., Tousignant, A., Ewert, M. A., Nelson, C. E., and Crews, D. (1993). Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. The Journal of Experimental Zoology 265, 679–683.
Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius.Crossref | GoogleScholarGoogle Scholar | 8487018PubMed |

Vitt, L. J., and Pianka, E. R. (1994). ‘Lizard Ecology: Historical and Experimental Perspectives.’ (Princeton University Press: Princeton, NJ.)

Wade, J. S. (2011). Relationships among hormones, brain and motivated behaviors in lizards. Hormones and Behavior 59, 637–644.
Relationships among hormones, brain and motivated behaviors in lizards.Crossref | GoogleScholarGoogle Scholar |

Wade, J. S., Huang, J. M., and Crews, D. (1993). Hormonal control of sex differences in the brain, behavior and accessory sex structures of whiptail lizards (Cnemidophorus species). Journal of Neuroendocrinology 5, 81–93.
Hormonal control of sex differences in the brain, behavior and accessory sex structures of whiptail lizards (Cnemidophorus species).Crossref | GoogleScholarGoogle Scholar |

Wang, C., Tang, X., Xin, Y., Yue, F., Yan, X., Liu, B., An, B., Wang, X., and Chen, Q. (2015). Identification of sex chromosomes by means of comparative genomic hybridization in a lizard, Eremias multiocellata. Zoological Science 32, 151–156.
Identification of sex chromosomes by means of comparative genomic hybridization in a lizard, Eremias multiocellata.Crossref | GoogleScholarGoogle Scholar | 25826063PubMed |

Wapstra, E., and Olsson, M. (2014). The evolution of polyandry and patterns of multiple paternity in lizards. In ‘Reproductive Biology and Phylogeny of Lizards and Tuatara’. (Eds J. L. Rheubert, D. S. Siegel, and S. E. Trauth.) pp. 576–601. (CRC Press: Boca Raton, FL, USA.)

Wapstra, E., and Swain, R. (2001). Geographic and annual variation in life-history traits in a temperate zone Australian skink. Journal of Herpetology 35, 194–203.
Geographic and annual variation in life-history traits in a temperate zone Australian skink.Crossref | GoogleScholarGoogle Scholar |

Wapstra, E., and Warner, D. A. (2010). Sex allocation and sex determination in squamate reptiles. Sexual Development 4, 110–118.
Sex allocation and sex determination in squamate reptiles.Crossref | GoogleScholarGoogle Scholar | 20051672PubMed |

Wapstra, E., Swain, R., Jones, S. M., and O’Reilly, J. (1999). Geographic and annual variation in reproductive cycles in the Tasmanian spotted snow skink, Niveoscincus ocellatus (Squamata: Scincidae). Australian Journal of Zoology 47, 539–550.
Geographic and annual variation in reproductive cycles in the Tasmanian spotted snow skink, Niveoscincus ocellatus (Squamata: Scincidae).Crossref | GoogleScholarGoogle Scholar |

Wapstra, E., Swain, R., and O’Reilly, J. M. (2001). Geographic variation in age and size at maturity in a small Australian viviparous skink. Copeia 2001, 646–655.
Geographic variation in age and size at maturity in a small Australian viviparous skink.Crossref | GoogleScholarGoogle Scholar |

Wapstra, E., Olsson, M., Shine, R., Edwards, A., Swain, R., and Joss, J. M. (2004). Maternal basking behaviour determines offspring sex in a viviparous reptile. Biology Letters 271, S230–S232.

Wapstra, E., Uller, T., Sinn, D. L., Olsson, M., Mazurek, K., Joss, J., and Shine, R. (2009). Climate effects on offspring sex ratio in a viviparous lizard. Journal of Animal Ecology 78, 84–90.
Climate effects on offspring sex ratio in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar |

Warner, D. A., and Shine, R. (2005). The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Evolution 59, 2209–2221.
The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard.Crossref | GoogleScholarGoogle Scholar | 16405164PubMed |

Warner, D. A., and Shine, R. (2007). Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size. Oecologia 154, 65–73.
Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size.Crossref | GoogleScholarGoogle Scholar | 17653771PubMed |

Warner, D. A., and Shine, R. (2008). The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566–568.
The adaptive significance of temperature-dependent sex determination in a reptile.Crossref | GoogleScholarGoogle Scholar | 18204437PubMed |

Warner, D. A., Woo, K. L., Van Dyk, D. A., Evans, C. S., and Shine, R. (2010). Egg incubation temperature affects male reproductive success but not display behaviors in lizards. Behavioral Ecology and Sociobiology 64, 803–813.
Egg incubation temperature affects male reproductive success but not display behaviors in lizards.Crossref | GoogleScholarGoogle Scholar |

Watson, G., Green, D., and Watson, J. (2019). Observations supporting parental care by a viviparous reptile: aggressive behaviour against predators demonstrated by Cunningham’s skinks. Australian Journal of Zoology 67, 180–183.
Observations supporting parental care by a viviparous reptile: aggressive behaviour against predators demonstrated by Cunningham’s skinks.Crossref | GoogleScholarGoogle Scholar |

Weber, C., and Capel, B. (2018). Sex reversal. Current Biology 28, R1234–R1236.
Sex reversal.Crossref | GoogleScholarGoogle Scholar | 30399341PubMed |

Wedekind, C. (2017). Demographic and genetic consequences of disturbed sex determination. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20160326.
Demographic and genetic consequences of disturbed sex determination.Crossref | GoogleScholarGoogle Scholar |

Weekes, H. C. (1935). A review of placentation among reptiles with particular regard to the function and evolution of the placenta. Proceedings of the Zoological Society of London 105, 625–645.
A review of placentation among reptiles with particular regard to the function and evolution of the placenta.Crossref | GoogleScholarGoogle Scholar |

Weldon, P. J., Flachsbarth, B., and Schulz, S. (2008). Natural products from the integument of non-avian reptiles. Natural Product Reports 25, 738–756.
Natural products from the integument of non-avian reptiles.Crossref | GoogleScholarGoogle Scholar | 18663393PubMed |

While, G. M., and Wapstra, E. (2009). Effects of basking opportunity on birthing asynchrony in a viviparous lizard. Animal Behaviour 77, 1465–1470.
Effects of basking opportunity on birthing asynchrony in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Jones, S. M., and Wapstra, E. (2007). Birthing asynchrony is not a consequence of asynchronous offspring development in a non-avian vertebrate, the Australian skink Egernia whitii. Functional Ecology 21, 513–519.
Birthing asynchrony is not a consequence of asynchronous offspring development in a non-avian vertebrate, the Australian skink Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Uller, T., and Wapstra, E. (2009a). Offspring performance and the adaptive benefits of prolonged pregnancy: experimental tests in a viviparous lizard. Functional Ecology 23, 818–825.
Offspring performance and the adaptive benefits of prolonged pregnancy: experimental tests in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Uller, T., and Wapstra, E. (2009b). Within‐population variation in social strategies characterize the social and mating system of an Australian lizard, Egernia whitii. Austral Ecology 34, 938–949.
Within‐population variation in social strategies characterize the social and mating system of an Australian lizard, Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Uller, T., and Wapstra, E. (2011). Variation in social organization influences the opportunity for sexual selection in a social lizard. Molecular Ecology 20, 844–852.
Variation in social organization influences the opportunity for sexual selection in a social lizard.Crossref | GoogleScholarGoogle Scholar | 21199033PubMed |

While, G. M., Uller, T., Bordogna, G., and Wapstra, E. (2014). Promiscuity resolves constraints on social mate choice imposed by population viscosity. Molecular Ecology 23, 721–732.
Promiscuity resolves constraints on social mate choice imposed by population viscosity.Crossref | GoogleScholarGoogle Scholar | 24354676PubMed |

While, G. M., Gardner, M., Chapple, D. G., and Whiting, M. J. (2019). Stable social grouping in lizards. In ‘Evolutionary and Mechanistic Perspectives’. (Eds A. Russel, and V. Bells.) pp. 321–343. (CRC Press: New Hampshire, USA.)

Whiteley, S. L., Holleley, C. E., Ruscoe, W. A., Castelli, M., Whitehead, D. L., Lei, J., Georges, A., and Weisbecker, V. (2017). Sex determination mode does not affect body or genital development of the central bearded dragon (Pogona vitticeps). EvoDevo 8, 25.
Sex determination mode does not affect body or genital development of the central bearded dragon (Pogona vitticeps).Crossref | GoogleScholarGoogle Scholar | 29225770PubMed |

Whiteley, S. L., Weisbecker, V., Georges, A., Gauthier, A. R. G., Whitehead, D. L., and Holleley, C. E. (2018). Developmental asynchrony and antagonism of sex determination pathways in a lizard with temperature-induced sex reversal. Scientific Reports 8, 14892.
Developmental asynchrony and antagonism of sex determination pathways in a lizard with temperature-induced sex reversal.Crossref | GoogleScholarGoogle Scholar | 30291276PubMed |

Whiteley, S. L., Castelli, M. A., Dissanayake, D. S. B., Holleley, C. E., and Georges, A (2021a). Temperature induced sex reversal in reptiles: prevalence, discovery, and evolutionary implications. Sexual Development. , .
Temperature induced sex reversal in reptiles: prevalence, discovery, and evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 34111872PubMed |

Whiteley, S. L., Georges, A., Weisbecker, V., Schwanz, L. E., and Holleley, C. E. (2021b). Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences 288, 20202819.
Ovotestes suggest cryptic genetic influence in a reptile model for temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 33467998PubMed |

Whiteley, S. L., Holleley, C. E., Wagner, S., Blackburn, J., Deveson, I. W., Graves, J. A. M., and Georges, A (2021c). Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLOS Genetics 17, e1009465.
Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 33857129PubMed |

Whiting, M., and While, G. M. (2017). Sociality in lizards. In ‘Comparative Social Evolution’. (Eds D. R. Rubenstein, and P. Abbot.) pp. 390–426. (Cambridge University Press: Cambridge.)

Whittington, C. M., Grau, G. E., Murphy, C. R., and Thompson, M. B. (2015). Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 324, 152–158.
Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity.Crossref | GoogleScholarGoogle Scholar | 25732926PubMed |

Wiggins, J. M., Santoyo-Brito, E., Scales, J. B., and Fox, S. F. (2020). Gene dose indicates presence of sex chromosomes in collared lizards (Crotaphytus collaris), a species with temperature-influenced sex determination. Herpetologica 76, 27–30.
Gene dose indicates presence of sex chromosomes in collared lizards (Crotaphytus collaris), a species with temperature-influenced sex determination.Crossref | GoogleScholarGoogle Scholar |

Wilson, S., and Swan, G. (2021). ‘A Complete Guide to Reptiles of Australia.’ 6th edn. (Reed New Holland: Wahroonga, NSW.)

Wu, Q., Thompson, M. B., and Murphy, C. R. (2011). Changing distribution of cadherins during gestation in the uterine epithelium of lizards. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 316B, 440–450.
Changing distribution of cadherins during gestation in the uterine epithelium of lizards.Crossref | GoogleScholarGoogle Scholar |

Wyatt, T. D. (2010). Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 196, 685–700.
Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates.Crossref | GoogleScholarGoogle Scholar | 20680632PubMed |

Yampolsky, L. Y., and Scheiner, S. M. (1996). Why larger offspring at lower temperatures? A demographic approach. American Naturalist 147, 86–100.
Why larger offspring at lower temperatures? A demographic approach.Crossref | GoogleScholarGoogle Scholar |

Yewers, M. S. C., Pryke, S., and Stuart-Fox, D. (2016). Behavioural differences across contexts may indicate morph-specific strategies in the lizard Ctenophorus decresii. Animal Behaviour 111, 329–339.
Behavioural differences across contexts may indicate morph-specific strategies in the lizard Ctenophorus decresii.Crossref | GoogleScholarGoogle Scholar |

Yewers, M. S. C., Jessop, T. S., and Stuart-Fox, D. (2017). Endocrine differences among colour morphs in a lizard with alternative behavioural strategies. Hormones and Behavior 93, 118–127.
Endocrine differences among colour morphs in a lizard with alternative behavioural strategies.Crossref | GoogleScholarGoogle Scholar |

Yntema, C. L. (1976). Effects of incubation temperatures on sexual differentiation in the turtle, Chelydra serpentina. Journal of Morphology 150, 453–461.
Effects of incubation temperatures on sexual differentiation in the turtle, Chelydra serpentina.Crossref | GoogleScholarGoogle Scholar | 30257532PubMed |

York, J. R., and Baird, T. A. (2019). Sexual selection on female collared lizards favours offspring production with multiple males. Animal Behaviour 147, 17–23.
Sexual selection on female collared lizards favours offspring production with multiple males.Crossref | GoogleScholarGoogle Scholar |

Young, R., Ferkin, M., Ockendon-Powell, N., Orr, V., Phelps, S., Pogány, Á., Richards-Zawacki, C., Summers, K., Székely, T., Trainor, B., Zachar, G., O’Connell, L., and Hofmann, H. (2019). Conserved transcriptomic profiles underpin monogamy across vertebrates. Proceedings of the National Academy of Sciences of the United States of America 116, 1331–1336.
Conserved transcriptomic profiles underpin monogamy across vertebrates.Crossref | GoogleScholarGoogle Scholar | 30617061PubMed |

Zamudio, K. R., and Sinervo, B. (2000). Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies. Proceedings of the National Academy of Sciences of the United States of America 97, 14427–14432.
Polygyny, mate-guarding, and posthumous fertilization as alternative male mating strategies.Crossref | GoogleScholarGoogle Scholar | 11106369PubMed |

Ziegler, T., Gaulke, M., and Böhme, W. (2005). Genital morphology and systematics of Varanus mabitang Gaulke & Curio, 2001 (Squamata: Varanidae). Current Herpetology 24, 13–17.
Genital morphology and systematics of Varanus mabitang Gaulke & Curio, 2001 (Squamata: Varanidae).Crossref | GoogleScholarGoogle Scholar |

Ziegler, T., Schmitz, A., Koch, A., and Böhme, W. (2007). A review of the subgenus Euprepiosaurus of Varanus (Squamata: Varanidae): morphological and molecular phylogeny, distribution and zoogeography, with an identification key for the members of the V. indicus and the V. prasinus species groups. Zootaxa 1472, 1.
A review of the subgenus Euprepiosaurus of Varanus (Squamata: Varanidae): morphological and molecular phylogeny, distribution and zoogeography, with an identification key for the members of the V. indicus and the V. prasinus species groups.Crossref | GoogleScholarGoogle Scholar |

Zozaya, S. M., Higgie, M., Moritz, C., and Hoskin, C. J. (2019). Are pheromones key to unlocking cryptic lizard diversity? American Naturalist 194, 168–182.
Are pheromones key to unlocking cryptic lizard diversity?Crossref | GoogleScholarGoogle Scholar |