Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Physiological implications of climate change for a critically endangered Australian marsupial

Christine Elizabeth Cooper https://orcid.org/0000-0001-6225-2324 A B D , Philip Carew Withers A B and James Malcolm Turner https://orcid.org/0000-0001-8699-7750 C
+ Author Affiliations
- Author Affiliations

A School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.

B School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.

C Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia.

D Corresponding author. Email: c.cooper@curtin.edu.au

Australian Journal of Zoology 68(4) 200-211 https://doi.org/10.1071/ZO20067
Submitted: 23 July 2020  Accepted: 14 October 2020   Published: 19 November 2020

Abstract

Extreme weather events (e.g. heatwaves and droughts) can expose animals to environmental conditions outside of their zones of physiological tolerance, and even resistance, and impact long-term viability of populations and species. We examined the thermal and hygric physiology of the critically endangered western ringtail possum (Pseudocheirus occidentalis), a member of a family of marsupial folivores (Pseudocheiridae) that appear particularly vulnerable to environmental extremes. Basal metabolic rate and other standard physiological variables measured at an ambient temperature of 30°C conformed to values for other marsupials. At lower temperatures, body temperature decreased slightly, and metabolic rate increased significantly at 5°C. At higher temperatures, possums experienced mild hyperthermia and increased evaporative heat loss by licking rather than panting. Their point of relative water economy (–8.7°C) was more favourable than other pseudocheirid possums and the koala (Phascolarctos cinereus). We predict that western ringtail possums should tolerate low ambient temperatures well and be more physiologically tolerant of hot and dry conditions than common (Pseudocheirus peregrinus) and particularly green (Pseudochirops archeri) ringtail possums, and koalas. Our physiological data can be incorporated into mechanistic species distribution models to test our hypothesis that western ringtail possums should physiologically tolerate the climate of habitat further inland than their current distribution, and withstand moderate impacts of climate change in the south-west of Western Australia.

Keywords: body temperature, evaporative water loss, extreme weather, heatwave, metabolic rate, Pseudocheirus occidentalis, relative water economy, respirometry, thermoregulation, western ringtail possum.


References

Albright, T. P., Mutiibwa, D., Gerson, A. R., Smith, E. K., Talbot, W. A., O’Neill, J. J., McKechnie, A. E., and Wolf, B. O. (2017). Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences of the United States of America 114, 2283–2288.
Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.Crossref | GoogleScholarGoogle Scholar | 28193891PubMed |

Barker, J. M., Cooper, C. E., Withers, P. C., and Nicol, S. C. (2016). Reexamining echidna physiology: the big picture for Tachyglossus aculeatus acanthion. Physiological and Biochemical Zoology 89, 169–181.
Reexamining echidna physiology: the big picture for Tachyglossus aculeatus acanthion.Crossref | GoogleScholarGoogle Scholar | 27153127PubMed |

Bates, B. C., Hope, P., Ryan, B., Smith, I., and Charles, S. (2008). Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Climatic Change 89, 339–354.
Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia.Crossref | GoogleScholarGoogle Scholar |

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2014). lme4: linear mixed-effects models using Eigen and S4. R package v. 1.1–7. Available at: http://CRAN.R-project. org/package=lme4

Beale, P. K., Marsh, K. J., Foley, W. J., and Moore, B. D. (2018). A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biological Reviews of the Cambridge Philosophical Society 93, 674–692.
A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology.Crossref | GoogleScholarGoogle Scholar | 28881466PubMed |

Bergman, J. N., Bennett, J. R., Binley, A. D., Cooke, S. J., Fyson, V., Hlina, B. L., Reida, C. H., Michelle, A., Valaa, M. A., and Madliger, C. L. (2019). Scaling from individual physiological measures to population-level demographic change: case studies and future directions for conservation management. Biological Conservation 238, 108242.
Scaling from individual physiological measures to population-level demographic change: case studies and future directions for conservation management.Crossref | GoogleScholarGoogle Scholar |

Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., MacPhee, R. D., Beck, R. M., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507–512.
The delayed rise of present-day mammals.Crossref | GoogleScholarGoogle Scholar | 17392779PubMed |

Bozinovic, F., Calosi, P., and Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics 42, 155–179.
Physiological correlates of geographic range in animals.Crossref | GoogleScholarGoogle Scholar |

Briscoe, N. J., Kearney, M. R., Taylor, C. A., and Wintle, B. A. (2016). Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology 22, 2425–2439.
Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia.Crossref | GoogleScholarGoogle Scholar | 26960136PubMed |

Burbidge, A. A., and Zichy-Woinarski, J. (2017). Pseudocheirus occidentalis. The IUCN Red List of Threatened Species 2017: e.T18492A21963100. Available at: 10.2305/IUCN.UK.2017-3.RLTS.T18492A21963100.en [accessed 18 May 2020].

Charles, S. P., Silberstein, R., Teng, J., Fu, G., Hodgson, G., Gabrovsek, C., Crute, J., Chiew, F. H. S., Smith, I. N., Kirono, D. G. C., Bathols, J. M., Li, L. T., Yang, A., Donohue, R. J., Marvanek, S. P., McVicar, T. R., Van Niel, T. G., and Cai, W. (2010). Climate analyses for south-west Western Australia. A report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project. Available at: http://www.clw.csiro.au/publications/waterforahealthycountry/swsy/pdf/SWSY_Climate_TechRpt.pdf

Cheverud, J. M., Dow, M. M., and Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39, 1335–1351.
The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates.Crossref | GoogleScholarGoogle Scholar | 28564267PubMed |

Clarke, J. R. (2011). Translocation outcomes for the western ringtail possum (Pseudocheirus occidentalis) in the presence of the common brushtail possum (Trichosurus vulpecula): health, survivorship and habitat use. Ph.D. thesis, Murdoch University, Perth.

Cooke, S. J., Sack, L., Franklin, C. E., Farrell, A. P., Beardall, J., Wikelski, M., and Chown, S. L. (2013). What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conservation Physiology 1, cot001.
What is conservation physiology? Perspectives on an increasingly integrated and essential science.Crossref | GoogleScholarGoogle Scholar | 27293599PubMed |

Cooper, C. E., and Withers, P. C. (2004). Ventilatory physiology of the numbat (Myrmecobius fasciatus). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 174, 107–111.
Ventilatory physiology of the numbat (Myrmecobius fasciatus).Crossref | GoogleScholarGoogle Scholar | 14628148PubMed |

Cooper, C. E., and Withers, P. C. (2006). Numbats and aardwolves – how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 176, 623–629.
Numbats and aardwolves – how low is low? A re-affirmation of the need for statistical rigour in evaluating regression predictions.Crossref | GoogleScholarGoogle Scholar | 16639599PubMed |

Cooper, C. E., and Withers, P. C. (2010). Comparative physiology of Australian quolls (Dasyurus; Marsupialia). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 857–868.
Comparative physiology of Australian quolls (Dasyurus; Marsupialia).Crossref | GoogleScholarGoogle Scholar | 20217094PubMed |

Cooper, C. E., Withers, P. C., and Cruz-Neto, A. P. (2010). Metabolic, ventilatory, and hygric physiology of a South American marsupial, the long-furred woolly mouse opossum. Journal of Mammalogy 91, 1–10.
Metabolic, ventilatory, and hygric physiology of a South American marsupial, the long-furred woolly mouse opossum.Crossref | GoogleScholarGoogle Scholar |

Cooper, C. E., Withers, P. C., Hardie, A., and Geiser, F. (2016). Marsupials don’t adjust their thermal energetics for life in an alpine environment. Temperature 3, 484–498.
Marsupials don’t adjust their thermal energetics for life in an alpine environment.Crossref | GoogleScholarGoogle Scholar |

Cooper, C. E., Withers, P. C., Munns, S. L., Geiser, F., and Buttemer, W. A. (2018). Geographical variation in the standard physiology of brushtail possums (Trichosurus): implications for conservation translocations. Conservation Physiology 6, coy042.
Geographical variation in the standard physiology of brushtail possums (Trichosurus): implications for conservation translocations.Crossref | GoogleScholarGoogle Scholar | 30323932PubMed |

Cooper, C. E., Withers, P. C., Hurley, L., and Griffith, S. C. (2019). The field metabolic rate, water turnover and feeding and drinking behaviour of a small avian desert granivore. Frontiers in Physiology 10, 1405.
The field metabolic rate, water turnover and feeding and drinking behaviour of a small avian desert granivore.Crossref | GoogleScholarGoogle Scholar | 31824330PubMed |

Cooper, C. E., Withers, P. C., Kortner, G., and Geiser, F. (2020). Control of insensible evaporative water loss by two species of mesic parrot suggests a thermoregulatory role. The Journal of Experimental Biology 223, jeb229930.
Control of insensible evaporative water loss by two species of mesic parrot suggests a thermoregulatory role.Crossref | GoogleScholarGoogle Scholar | 32747451PubMed |

Cossins, A. R., and Bowler, K. (1987). ‘Temperature Biology of Animals.’ (Springer: Dordrecht.)

Cox, L. (2019). ‘Falling out of trees’: dozens of dead possums blamed on extreme heat stress. The Guardian. Available at: https://www.theguardian.com/environment/2019/mar/07/falling-out-of-trees-dozens-of-dead-possums-blamed-on-extreme-heat-stress

Dawson, T. J. (1973). Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus. Comparative Biochemistry and Physiology. A. Comparative Physiology 46, 153–169.
Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus.Crossref | GoogleScholarGoogle Scholar | 4147795PubMed |

de Tores, P. J., Guthrie, N., Jackson, J., and Bertram, I. (2005). The western ringtail possum – a resilient species or another taxon on the decline. Western Wildlife 9, 4–5.

Degabriele, R., and Dawson, T. J. (1979). Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus). Journal of Comparative Physiology 134, 293–301.
Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar |

Diffenbaugh, N. S., and Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492.
Changes in ecologically critical terrestrial climate conditions.Crossref | GoogleScholarGoogle Scholar | 23908225PubMed |

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074.
Climate extremes: observations, modeling, and impacts.Crossref | GoogleScholarGoogle Scholar | 11000103PubMed |

Evans, T. G., Diamond, S. E., and Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology 3, cov056.
Mechanistic species distribution modelling as a link between physiology and conservation.Crossref | GoogleScholarGoogle Scholar | 27293739PubMed |

Faurby, S., and Araújo, M. B. (2018). Anthropogenic range contractions bias species climate change forecasts. Nature Climate Change 8, 252–256.
Anthropogenic range contractions bias species climate change forecasts.Crossref | GoogleScholarGoogle Scholar |

Fey, S. B., Siepielski, A. M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J. L., Huber, E. R., Fey, M. J., Catenazie, A., and Carlson, S. M. (2015). Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proceedings of the National Academy of Sciences of the United States of America 112, 1083–1088.
Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events.Crossref | GoogleScholarGoogle Scholar | 25583498PubMed |

Finlayson, H. H. (1932). Heat in the interior of South Australia – holocaust of bird-life. South Australian Ornithologist 11, 158–160.

Genoud, M., Isler, K., and Martin, R. D. (2018). Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biological Reviews of the Cambridge Philosophical Society 93, 404–438.
Comparative analyses of basal rate of metabolism in mammals: data selection does matter.Crossref | GoogleScholarGoogle Scholar | 28752629PubMed |

Gerson, A. R., Smith, E. K., Smit, B., McKechnie, A. E., and Wolf, B. O. (2014). The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures. Physiological and Biochemical Zoology 87, 782–795.
The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.Crossref | GoogleScholarGoogle Scholar | 25461643PubMed |

Gittleman, J. L., and Kot, M. (1990). Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Zoology 39, 227–241.
Adaptation: statistics and a null model for estimating phylogenetic effects.Crossref | GoogleScholarGoogle Scholar |

Harris, R. M., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M.-S., Keatley, M. R., Woodward, C. A., Williamson, G., Duke, N. C., and Bowman, D. M. J. S. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8, 579–587.
Biological responses to the press and pulse of climate trends and extreme events.Crossref | GoogleScholarGoogle Scholar |

Indian Ocean Climate Initiative (2012). Western Australia’s weather and climate: a synthesis of Indian Ocean Climate Initiative Stage 3 Research. CSIRO and BoM, Australia.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds R. K. Pachauri, and L. A. Meyer.) IPCC, Geneva, Switzerland.

Jones, B. (1995). Western ringtail possum Pseudocheirus occidentalis. In ‘Mammals of Australia’. (Ed. R. Strahan.) pp. 253–254. (Angus and Robertson: Sydney.)

Jones, B. A., How, R. A., and Kitchener, D. J. (1994). A field study of Pseudocheirus occidentalis (Marsupialia: Petauridae). II. Population studies. Wildlife Research 21, 189–201.
A field study of Pseudocheirus occidentalis (Marsupialia: Petauridae). II. Population studies.Crossref | GoogleScholarGoogle Scholar |

Kearney, M. R., Wintle, B. A., and Porter, W. P. (2010). Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters 3, 203–213.
Correlative and mechanistic models of species distribution provide congruent forecasts under climate change.Crossref | GoogleScholarGoogle Scholar |

Krockenberger, A. K., Edwards, W., and Kanowski, J. (2012). The limit to the distribution of a rainforest marsupial folivore is consistent with the thermal intolerance hypothesis. Oecologia 168, 889–899.
The limit to the distribution of a rainforest marsupial folivore is consistent with the thermal intolerance hypothesis.Crossref | GoogleScholarGoogle Scholar | 21987269PubMed |

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2014). lmerTest: tests in linear mixed effects models. R package version 2.0–20. Available at: http://CRAN.R-project.org/package=lmerTest

Larcombe, A. N. (2002). Effects of temperature on metabolism, ventilation and oxygen extraction in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Physiological and Biochemical Zoology 75, 405–411.
Effects of temperature on metabolism, ventilation and oxygen extraction in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae).Crossref | GoogleScholarGoogle Scholar |

Levesque, D. L., Nowack, J., and Stawski, C. (2016). Modelling mammalian energetics: the heterothermy problem. Climate Change Responses 3, 7.
Modelling mammalian energetics: the heterothermy problem.Crossref | GoogleScholarGoogle Scholar |

Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. American Naturalist 156, 201–219.
The zoogeography of mammalian basal metabolic rate.Crossref | GoogleScholarGoogle Scholar | 10856202PubMed |

Luke, S. G. (2017). Evaluating significance in linear mixed-effect models in R. Behavior Research Methods 49, 1494–1502.
Evaluating significance in linear mixed-effect models in R.Crossref | GoogleScholarGoogle Scholar | 27620283PubMed |

MacMillen, R. E., and Baudinette, R. V. (1993). Water economy of granivorous birds: Australian parrots. Functional Ecology 7, 704–712.
Water economy of granivorous birds: Australian parrots.Crossref | GoogleScholarGoogle Scholar |

MacMillen, R. E., and Hinds, D. S. (1983). Water regulatory efficiency in heteromyid rodents: a model and its application. Ecology 64, 152–164.
Water regulatory efficiency in heteromyid rodents: a model and its application.Crossref | GoogleScholarGoogle Scholar |

Madliger, C. L., Love, O. P., Hultine, K. R., and Cooke, S. J. (2018). The conservation physiology toolbox: status and opportunities. Conservation Physiology 6, coy029.
The conservation physiology toolbox: status and opportunities.Crossref | GoogleScholarGoogle Scholar | 29942517PubMed |

Malan, A. (1973). Ventilation measured by body plethysmography in hibernating mammals and in poikilotherms. Respiration Physiology 17, 32–44.
Ventilation measured by body plethysmography in hibernating mammals and in poikilotherms.Crossref | GoogleScholarGoogle Scholar | 4688286PubMed |

Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M., and Arieli, R. (1982). Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda) (Mammalia). Journal of Zoology 198, 279–291.
Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda) (Mammalia).Crossref | GoogleScholarGoogle Scholar |

Mathieson, T. J., Close, P. G., Van Helden, B. E., Speldewinde, P. C., and Comer, S. J. (2020). New evidence of unexpectedly high animal density and diet diversity will benefit the conservation of the critically endangered western ringtail possum. Austral Ecology 45, 596–608.
New evidence of unexpectedly high animal density and diet diversity will benefit the conservation of the critically endangered western ringtail possum.Crossref | GoogleScholarGoogle Scholar |

McKechnie, A. E., and Wolf, B. O. (2010). Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biological Letters 6, 253–256.
Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves.Crossref | GoogleScholarGoogle Scholar |

McKechnie, A. E., and Wolf, B. O. (2019). The physiology of heat tolerance in small endotherms. Physiology 34, 302–313.
The physiology of heat tolerance in small endotherms.Crossref | GoogleScholarGoogle Scholar | 31389778PubMed |

McKechnie, A. E., Hockey, P. A., and Wolf, B. O. (2012). Feeling the heat: Australian landbirds and climate change. Emu 112, i–vii.
Feeling the heat: Australian landbirds and climate change.Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (1988). Energy conservation in a tree-kangaroo (Dendrolagus matschiei) and the red panda (Ailurus fulgens). Physiological Zoology 61, 280–292.
Energy conservation in a tree-kangaroo (Dendrolagus matschiei) and the red panda (Ailurus fulgens).Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (2002). ‘The Physiological Ecology of Vertebrates.’ (Cornell University Press: New York.)

McNab, B. K. (2012). ‘Extreme Measures.’ (University of Chicago Press: Chicago.)

Meade, J., VanDerWal, J., Storlie, C., Williams, S., Gourret, A., Krockenberger, A., and Welbergen, J. A. (2018). Substantial reduction in thermo-suitable microhabitat for a rainforest marsupial under climate change. Biology Letters 14, 20180189.
Substantial reduction in thermo-suitable microhabitat for a rainforest marsupial under climate change.Crossref | GoogleScholarGoogle Scholar | 30958243PubMed |

Meehl, G. A., and Tebaldi, C. (2004). More intense, more frequent, and longer lasting heatwaves in the 21st century. Science 305, 994–997.
More intense, more frequent, and longer lasting heatwaves in the 21st century.Crossref | GoogleScholarGoogle Scholar | 15310900PubMed |

Meredith, R. W., Mendoza, M. A., Roberts, K. K., Westerman, M., and Springer, M. S. (2010). A phylogeny and timescale for the evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea. Journal of Mammalian Evolution 17, 75–99.
A phylogeny and timescale for the evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea.Crossref | GoogleScholarGoogle Scholar | 21125022PubMed |

Mitchell, K. J., Pratt, R. C., Watson, L. N., Gibb, G. C., Llamas, B., Kasper, M., Edson, J., Hopwood, B., Male, D., Armstrong, K. N., and Meyer, M. (2014). Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Molecular Biology and Evolution 31, 2322–2330.
Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.Crossref | GoogleScholarGoogle Scholar | 24881050PubMed |

Mitchell, D., Snelling, E. P., Hetem, R. S., Maloney, S. K., Strauss, W. M., and Fuller, A. (2018). Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. Journal of Animal Ecology 87, 956–973.
Revisiting concepts of thermal physiology: predicting responses of mammals to climate change.Crossref | GoogleScholarGoogle Scholar | 29479693PubMed |

Molloy, S. W., Davis, R. A., and Van Etten, E. J. (2014). Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentalis; Pseudocheiridae). Environmental Conservation 41, 176–186.
Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus occidentalis; Pseudocheiridae).Crossref | GoogleScholarGoogle Scholar |

Morán‐Ordóñez, A., Briscoe, N. J., and Wintle, B. A. (2018). Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals. Ecography 41, 308–320.
Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Munks, S. A. (1991). Ecological energetics and reproduction in the common ringtail possum, Pseudocheirus peregrinus (Marsupialia: Phalangeroidea). Ph.D. thesis, University of Tasmania, Hobart.

Munks, S. A., and Green, B. (1995). Energy allocation for reproduction in a marsupial arboreal folivore, the common ringtail possum (Pseudocheirus peregrinus). Oecologia 101, 94–104.
Energy allocation for reproduction in a marsupial arboreal folivore, the common ringtail possum (Pseudocheirus peregrinus).Crossref | GoogleScholarGoogle Scholar | 28306981PubMed |

Nagy, K. A., and Martin, R. W. (1985). Field metabolic rate, water flux, food consumption and time budget of koalas, Phascolarctos cinereus (Marsupialia: Phascolarctidae) in Victoria. Australian Journal of Zoology 33, 655–665.
Field metabolic rate, water flux, food consumption and time budget of koalas, Phascolarctos cinereus (Marsupialia: Phascolarctidae) in Victoria.Crossref | GoogleScholarGoogle Scholar |

Nicol, S. C., and Maskrey, M. (1977). Panting in small mammals: a comparison of two marsupials and the laboratory rabbit. Journal of Applied Physiology 42, 537–544.
Panting in small mammals: a comparison of two marsupials and the laboratory rabbit.Crossref | GoogleScholarGoogle Scholar | 863814PubMed |

Pahl, L. I. (1987). Survival, age-determination and population age structure of the common ringtail possum, Pseudocheirus peregrinus, in a Eucalyptus woodland and a Leptospermum thicket in southern Victoria. Australian Journal of Zoology 35, 625–639.
Survival, age-determination and population age structure of the common ringtail possum, Pseudocheirus peregrinus, in a Eucalyptus woodland and a Leptospermum thicket in southern Victoria.Crossref | GoogleScholarGoogle Scholar |

Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528.
ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.Crossref | GoogleScholarGoogle Scholar | 30016406PubMed |

Patton, K. T., and Thibodeau, G. A. (2018). ‘Anthony’s Textbook of Anatomy & Physiology.’ E-Book. (Elsevier Health Sciences: Amsterdam.)

Pitman, A. J., Narisma, G. T., Pielke, R. A., and Holbrook, N. J. (2004). Impact of land cover change on the climate of southwest Western Australia. Journal of Geophysical Research 109, D18109.
Impact of land cover change on the climate of southwest Western Australia.Crossref | GoogleScholarGoogle Scholar |

Pusey, H., Cooper, C. E., and Withers, P. C. (2013). Metabolic, hygric and ventilatory physiology of the red-tailed phascogale (Phascogale calura; Marsupialia, Dasyuridae): adaptations to aridity or arboreality? Mammalian Biology 78, 397–405.
Metabolic, hygric and ventilatory physiology of the red-tailed phascogale (Phascogale calura; Marsupialia, Dasyuridae): adaptations to aridity or arboreality?Crossref | GoogleScholarGoogle Scholar |

R Core Team (2020). R: a language and environment for statistical computing. Vienna, Austria. Available at: https://www.R-project.org/

Rahmstorf, S., and Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America 108, 17905–17909.
Increase of extreme events in a warming world.Crossref | GoogleScholarGoogle Scholar | 22025683PubMed |

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Richards, S. A. (1970). The biology and comparative physiology of thermal panting. Biological Reviews of the Cambridge Philosophical Society 45, 223–261.
The biology and comparative physiology of thermal panting.Crossref | GoogleScholarGoogle Scholar | 4916290PubMed |

Robinson, K. W., and Morrison, P. R. (1957). The reaction to hot atmospheres of various species of Australian marsupial and placental animals. Journal of Cellular and Comparative Physiology 49, 455–478.
The reaction to hot atmospheres of various species of Australian marsupial and placental animals.Crossref | GoogleScholarGoogle Scholar | 13481078PubMed |

Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143–2160.
Comparative methods for the analysis of continuous variables: geometric interpretations.Crossref | GoogleScholarGoogle Scholar | 11794776PubMed |

RStudio Team (2015). RStudio: integrated development for R. Rstudio, Boston, MA. Available at: http://www.rstudio.com/

Rübsamen, K., Hume, I. D., Foley, W. J., and Rübsamen, U. (1984). Implications of the large surface area to body mass ratio on the heat balance of the greater glider (Petauroides volans: Marsupialia). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 154, 105–111.
Implications of the large surface area to body mass ratio on the heat balance of the greater glider (Petauroides volans: Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Ruthrof, K. X., Breshears, D. D., Fontaine, J. B., Froend, R. H., Matusick, G., Kala, J., Miller, B. P., Mitchell, P. J., Wilson, S. K., van Keulen, M., Enright, N. J., Law, D. J., Wernberg, T., and Hardy, G. E. St. J. (2018). Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Scientific Reports 8, 13094.
Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses.Crossref | GoogleScholarGoogle Scholar | 30166559PubMed |

Saunders, D. A., Mawson, P., and Dawson, R. (2011). The impact of two extreme weather events and other causes of death on Carnaby’s black cockatoo: a promise of things to come for a threatened species? Pacific Conservation Biology 17, 141–148.
The impact of two extreme weather events and other causes of death on Carnaby’s black cockatoo: a promise of things to come for a threatened species?Crossref | GoogleScholarGoogle Scholar |

Seebacher, F., and Franklin, C. E. (2012). Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, 1607–1614.
Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.Crossref | GoogleScholarGoogle Scholar | 22566670PubMed |

Sergio, F., Blas, J., and Hiraldo, F. (2018). Animal responses to natural disturbance and climate extremes: a review. Global and Planetary Change 161, 28–40.
Animal responses to natural disturbance and climate extremes: a review.Crossref | GoogleScholarGoogle Scholar |

Sudmeyer, R., Edward, A., Fazakerley, V., Simpkin, L., and Foster, I. (2016). Climate change: impacts and adaptation for agriculture in Western Australia. Bulletin 4870, Department of Agriculture and Food, Western Australia, Perth.

Tarszisz, E., Dickman, C. R., and Munn, A. J. (2014). Physiology in conservation translocations. Conservation Physiology 2, cou054.
Physiology in conservation translocations.Crossref | GoogleScholarGoogle Scholar | 27293675PubMed |

Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A. (2006). Going to the extremes. Climatic Change 79, 185–211.
Going to the extremes.Crossref | GoogleScholarGoogle Scholar |

Turner, J. M. (2020). Facultative hyperthermia during a heatwave delays injurious dehydration of an arboreal marsupial. The Journal of Experimental Biology 223, jeb219378.
Facultative hyperthermia during a heatwave delays injurious dehydration of an arboreal marsupial.Crossref | GoogleScholarGoogle Scholar | 32054679PubMed |

van Dyk, M., Noakes, M. J., and McKechnie, A. E. (2019). Interactions between humidity and evaporative heat dissipation in a passerine bird. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 189, 299–308.
Interactions between humidity and evaporative heat dissipation in a passerine bird.Crossref | GoogleScholarGoogle Scholar | 30805750PubMed |

Van Helden, B. E., Speldewinde, P. C., Close, P. G., and Comer, S. J. (2018). Use of urban bushland remnants by the western ringtail possum (Pseudocheirus occidentalis): short-term home-range size and habitat use in Albany, Western Australia. Australian Mammalogy 40, 173–180.
Use of urban bushland remnants by the western ringtail possum (Pseudocheirus occidentalis): short-term home-range size and habitat use in Albany, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Van Helden, B. E., Close, P. G., Stewart, B. A., Speldewinde, P. C., and Comer, S. J. (2020). Going to ground: implications of ground use for the conservation of an arboreal marsupial. Australian Mammalogy 42, 106–109.
Going to ground: implications of ground use for the conservation of an arboreal marsupial.Crossref | GoogleScholarGoogle Scholar |

Walters, T. J., Ryan, K. L., and Constable, S. H. (2004). Thermoregulation by rhesus monkeys at different absolute humidities. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 174, 481–487.
Thermoregulation by rhesus monkeys at different absolute humidities.Crossref | GoogleScholarGoogle Scholar | 15309480PubMed |

Wayne, A. F., Cowling, A., Lindenmayer, D. B., Ward, C. G., Vellios, C. V., Donnelly, C. F., and Calver, M. C. (2006). The abundance of a threatened arboreal marsupial in relation to anthropogenic disturbances at local and landscape scales in Mediterranean-type forests in south-western Australia. Biological Conservation 127, 463–476.
The abundance of a threatened arboreal marsupial in relation to anthropogenic disturbances at local and landscape scales in Mediterranean-type forests in south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Welbergen, J. A., Klose, S. M., Markus, N., and Eby, P. (2008). Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B: Biological Sciences 275, 419–425.
Climate change and the effects of temperature extremes on Australian flying-foxes.Crossref | GoogleScholarGoogle Scholar | 18048286PubMed |

Welch, W. R. (1980). Evaporative water loss from endotherms in thermally and hygrically complex environments: an empirical approach for interspecific comparisons. Journal of Comparative Physiology 139, 135–143.
Evaporative water loss from endotherms in thermally and hygrically complex environments: an empirical approach for interspecific comparisons.Crossref | GoogleScholarGoogle Scholar |

Williams, J. E., and Blois, J. L. (2018). Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? Journal of Biogeography 45, 2175–2189.
Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts?Crossref | GoogleScholarGoogle Scholar |

Winter, J., Menkhorst, P., Lunney, D., and van Weenen, J. (2016). Pseudocheirus peregrinus. The IUCN Red List of Threatened Species 2016: e.T40581A21963019. Available at: 10.2305/IUCN.UK.2016-2.RLTS.T40581A21963019.en [accessed 18 May 2020].

Withers, P. C. (1977). Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respiration Physiology 31, 295–307.
Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles.Crossref | GoogleScholarGoogle Scholar |

Withers, P. C. (2001). Design, calibration and calculation for flow-through respirometry systems. Australian Journal of Zoology 49, 445–461.
Design, calibration and calculation for flow-through respirometry systems.Crossref | GoogleScholarGoogle Scholar |

Withers, P. C., and Cooper, C. E. (2011). Using a priori contrasts for multivariate repeated-measures ANOVA to analyze thermoregulatory responses of the dibbler (Parantechinus apicalis; Marsupialia, Dasyuridae). Physiological and Biochemical Zoology 84, 514–521.
Using a priori contrasts for multivariate repeated-measures ANOVA to analyze thermoregulatory responses of the dibbler (Parantechinus apicalis; Marsupialia, Dasyuridae).Crossref | GoogleScholarGoogle Scholar | 21897088PubMed |

Withers, P. C., and Cooper, C. E. (2014). Physiological regulation of evaporative water loss in endotherms: is the little red kaluta (Dasykaluta rosamondae) an exception or the rule? Proceedings of the Royal Society B: Biological Sciences 281, 20140149.
Physiological regulation of evaporative water loss in endotherms: is the little red kaluta (Dasykaluta rosamondae) an exception or the rule?Crossref | GoogleScholarGoogle Scholar | 24741015PubMed |

Withers, P. C., Cooper, C. E., and Larcombe, A. N. (2006). Environmental correlates of physiological variables in marsupials. Physiological and Biochemical Zoology 79, 437–453.
Environmental correlates of physiological variables in marsupials.Crossref | GoogleScholarGoogle Scholar | 16691511PubMed |

Withers, P. C., Cooper, C. E., and Nespolo, R. F. (2012). Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides). The Journal of Experimental Biology 215, 2806–2813.
Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).Crossref | GoogleScholarGoogle Scholar | 22837452PubMed |

Withers, P. C., Cooper, C. E., Maloney, S. K., Bozinovic, F., and Cruz-Neto, A. P. (2016). ‘Ecological and Environmental Physiology of Mammals.’ (Oxford University Press: Oxford.)

Woinarski, J., and Burbidge, A. A. (2019). Pseudochirops archeri. The IUCN Red List of Threatened Species 2019: e.T18502A21962719. Available at: 10.2305/IUCN.UK.2019-1.RLTS.T18502A21962719.en [accessed 18 May 2020].

Woinarski, J., Wintle, B., Dickman, C., Bowman, D., Deith, D., and Legge, S. (2020). A season in hell: bushfires push at least 20 threatened species closer to extinction. The Conversation, 8 January 2020. Available at: https://theconversation.com/a-season-in-hell-bushfires-push-at-least-20-threatened-species-closer-to-extinction-129533

Wolf, B. (2000). Global warming and avian occupancy of hot deserts: a physiological and behavioral perspective. Revista Chilena de Historia Natural 73, 395–400.
Global warming and avian occupancy of hot deserts: a physiological and behavioral perspective.Crossref | GoogleScholarGoogle Scholar |