Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Evidence of male-biased dispersal in eastern grey kangaroos (Macropus giganteus)

Brett A. Coghlan A D , Jennifer M. Seddon B , Emily C. Best A , Vicki A. Thomson A C and Anne W. Goldizen A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia.

B School of Veterinary Science, The University of Queensland, Gatton, Qld 4343, Australia.

C School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

D Corresponding author. Email: brett.coghlan@uqconnect.edu.au

Australian Journal of Zoology 64(5) 360-369 https://doi.org/10.1071/ZO16047
Submitted: 18 July 2016  Accepted: 14 February 2017   Published: 1 March 2017

Abstract

Dispersal reduces the likelihood of inbreeding and maintains gene flow among populations. Many polygynous mammals exhibit male-biased dispersal with female philopatry. Previous observational studies of eastern grey kangaroos (Macropus giganteus) suggested female philopatry while genetic studies showed weak structuring. We tested for sex-biased dispersal using two Queensland populations of kangaroos: one in Sundown National Park and the second at Elanda Point, Australia. Samples from 25 females and 23 males were collected from Sundown National Park, and analysed for partial mtDNA control region sequences (n = 47) and genotypes based on 12 microsatellite loci (n = 41). Samples from 18 males and 22 females from Elanda Point were genotyped at 8 loci and a subset sequenced for mtDNA (n = 19). Analyses showed higher mtDNA haplotype and nucleotide diversity in males than females within both populations, genetic relatedness based on microsatellite data was significantly higher among females, and microsatellite allelic richness was higher in males, suggesting that females are more likely to be philopatric and males more likely to disperse. These findings reinforce the value of including multiple types of genetic markers in dispersal analyses as mtDNA results showed higher male diversity (suggesting male dispersal) but males also contributed microsatellite alleles to the local population, masking differentiation between the sexes and confounding analyses.

Additional keywords: microsatellites, mtDNA control region, philopatry, sex-biased dispersal.


References

Andreassen, H. P., Stenseth, N. C., and Ims, R. A. (2002). Dispersal behaviour and population dynamics of vertebrates. In ‘Dispersal Ecology’. (Eds J. M. Bullock, R. E. Kenward and R. S. Hails.) pp. 237–256. (Blackwell Publishing: Melbourne.)

Arnold, G. W., Steven, D. E., and Weeldenburg, J. R. (1989). The use of surrounding farmland by western gray kangaroos living in a remnant of wandoo woodland and their impact on crop production. Wildlife Research 16, 85–93.
The use of surrounding farmland by western gray kangaroos living in a remnant of wandoo woodland and their impact on crop production.Crossref | GoogleScholarGoogle Scholar |

Arnold, G. W., Steven, D. E., Grassia, A., and Weeldenburg, J. (1992). Home-range size and fidelity of western grey kangaroos (Macropus fuliginosus) living in remnants of wandoo woodland and adjacent farmland. Wildlife Research 19, 137–143.
Home-range size and fidelity of western grey kangaroos (Macropus fuliginosus) living in remnants of wandoo woodland and adjacent farmland.Crossref | GoogleScholarGoogle Scholar |

Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., Chapman, C. A., Connor, R., Di Fiore, A., Dunbar, R. I. M., Henzi, S. P., Holekamp, K., Korstjens, A. H., Layton, R., Lee, P., Lehmann, J., Manson, J. H., Ramos‐Fernandez, G., Strier, K. B., and van Schaik, C. P. (2008). Fission–fusion dynamics: new research frameworks. Current Anthropology 49, 627–654.

Balloux, F., Brunner, H., Lugon-Moulin, N., Hausser, J., and Goudet, J. (2000). Microsatellites can be misleading: an empirical and simulation study. Evolution 54, 1414–1422.
Microsatellites can be misleading: an empirical and simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVyltL0%3D&md5=51c403037929764db126127ca1de4c47CAS |

Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVGltA%3D%3D&md5=58d5b6bec008694ec319574a368d6f68CAS |

Banks, S. C., Skerratt, L. F., and Taylor, A. C. (2002). Female dispersal and relatedness structure in common wombats (Vombatus ursinus). Journal of Zoology 256, 389–399.
Female dispersal and relatedness structure in common wombats (Vombatus ursinus).Crossref | GoogleScholarGoogle Scholar |

Best, E. C., Seddon, J. M., Dwyer, R. G., and Goldizen, A. W. (2013). Social preference influences female community structure in a population of wild eastern grey kangaroos. Animal Behaviour 86, 1031–1040.
Social preference influences female community structure in a population of wild eastern grey kangaroos.Crossref | GoogleScholarGoogle Scholar |

Best, E. C., Dwyer, R. G., Seddon, J. M., and Goldizen, A. W. (2014). Associations are more strongly correlated with space use than kinship in female eastern grey kangaroos. Animal Behaviour 89, 1–10.
Associations are more strongly correlated with space use than kinship in female eastern grey kangaroos.Crossref | GoogleScholarGoogle Scholar |

Carter, A. J., Macdonald, S. L., Thomson, V. A., and Goldizen, A. W. (2009). Structured association patterns and their energetic benefits in female eastern grey kangaroos, Macropus giganteus. Animal Behaviour 77, 839–846.
Structured association patterns and their energetic benefits in female eastern grey kangaroos, Macropus giganteus.Crossref | GoogleScholarGoogle Scholar |

Chesser, R. K., and Baker, R. J. (1996). Effective sizes and dynamics of uniparentally and diparentally inherited genes. Genetics 144, 1225–1235.
| 1:STN:280:DyaK2s%2FntVygtQ%3D%3D&md5=e6bd08c66d19c10121638fc29ac3ab39CAS |

Christensen, P. E., and Maisey, K. (1987). The use of fire as a management tool in fauna conservation reserves. In ‘Nature Conservation: the Role of Remnants of Native Vegetation’. (Eds D. A. Saunders, G. W. Arnold, A. A. Burbidge and A. J. M. Hopkins.) pp. 323–329. (Surrey Beatty: Sydney.)

Clegg, S. M., Hale, P., and Moritz, C. (1998). Molecular population genetics of the red kangaroo (Macropus rufus): mtDNA variation. Molecular Ecology 7, 679–686.
Molecular population genetics of the red kangaroo (Macropus rufus): mtDNA variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlemu70%3D&md5=165a8732476dbc5a2b09619e1b29eaf2CAS |

Clutton-Brock, T. H., and Lukas, D. (2012). The evolution of social philopatry and dispersal in female mammals. Molecular Ecology 21, 472–492.
The evolution of social philopatry and dispersal in female mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387jvFWqsw%3D%3D&md5=c714988321cd6f65ca45762b4e9b2506CAS |

Coghlan, B. A., Goldizen, A. W., Thomson, V. A., and Seddon, J. M. (2015). Phylogeography of eastern grey kangaroos, Macropus giganteus, suggests a mesic refugium in eastern Australia. PLoS One 10, e0128160.
Phylogeography of eastern grey kangaroos, Macropus giganteus, suggests a mesic refugium in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=be0f15211e580dee46b13fb61c5d9719CAS |

Dobson, F. S. (1982). Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour 30, 1183–1192.
Competition for mates and predominant juvenile male dispersal in mammals.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |

Favre, L., Balloux, F., Goudet, J., and Perrin, N. (1997). Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proceedings of the Royal Society of London Series B: Biological Sciences 264, 127–132.
Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3hsFKiuw%3D%3D&md5=baf2ea903d4eab86b11d7db452a1837eCAS |

Frankham, G. J., Handasyde, K. A., Norton, M., Murray, A., and Eldridge, M. D. B. (2014). Molecular detection of intra-population structure in a threatened potoroid, Potorous tridactylus: conservation management and sampling implications. Conservation Genetics 15, 547–560.
Molecular detection of intra-population structure in a threatened potoroid, Potorous tridactylus: conservation management and sampling implications.Crossref | GoogleScholarGoogle Scholar |

Fumagalli, L., Pope, L. C., Taberlet, P., and Moritz, C. (1997). Versatile primers for the amplification of the mitochondrial DNA control region in marsupials. Molecular Ecology 6, 1199–1201.
Versatile primers for the amplification of the mitochondrial DNA control region in marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVWntA%3D%3D&md5=39217c7c6d5a90d2faeb420342092dc0CAS |

Goudet, J. (1995). FSTAT (Version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, M., Kishino, H., and Yano, T.-a. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=f46ec70dec62926c0d3aca156f237cacCAS |

Hazlitt, S. L., Sigg, D. P., Eldridge, M. D. B., and Goldizen, A. W. (2006). Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata). Molecular Ecology 15, 2997–3007.
Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vovVeqsA%3D%3D&md5=fc5d65520f1df2441ad8f8314a808713CAS |

Hazlitt, S. L., Eldridge, M. D. B., and Goldizen, A. W. (2010). Strong matrilineal structuring in the brush-tailed rock-wallaby confirmed by spatial patterns of mitochondrial DNA. In ‘Macropods: the Biology of Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Coulson and M. Eldridge.) pp. 87–95. (CSIRO Publishing: Melbourne.)

Hurles, M. E., and Jobling, M. A. (2001). Haploid chromosomes in molecular ecology: lessons from the human Y. Molecular Ecology 10, 1599–1613.
Haploid chromosomes in molecular ecology: lessons from the human Y.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVynsro%3D&md5=de1a56042afe4072bad3553f162792d2CAS |

Jaremovic, R. V., and Croft, D. B. (1991). Social organization of the eastern grey kangaroo (Macropodidae, Marsupialia) in southeastern New South Wales. I. Groups and group home ranges. Mammalia 55, 169–186.
Social organization of the eastern grey kangaroo (Macropodidae, Marsupialia) in southeastern New South Wales. I. Groups and group home ranges.Crossref | GoogleScholarGoogle Scholar |

Jarman, P., and Taylor, R. (1983). Ranging of eastern grey kangaroos and wallaroos on a New England pastoral property. Wildlife Research 10, 33–38.
Ranging of eastern grey kangaroos and wallaroos on a New England pastoral property.Crossref | GoogleScholarGoogle Scholar |

Jarman, P. J., Jones, M. E., Johnson, C. N., Southwell, C. J., Stuartdick, R. I., Higginbottom, K. B., and Clarke, J. L. (1989). Macropod studies at Wallaby Creek. VIII. Individual recognition of kangaroos and wallabies. Wildlife Research 16, 179–185.
Macropod studies at Wallaby Creek. VIII. Individual recognition of kangaroos and wallabies.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. N. (1989). Dispersal and philopatry in the macropodoids. In ‘Kangaroos, Wallabies and Rat-kangaroos. Vol. 2.’ (Eds G. Grigg, P. Jarman and I. Hume.) pp. 593–601. (Surrey Beatty: Sydney.)

Johnson, C. N., and Crossman, D. G. (1991). Dispersal and social organization of the northern hairy-nosed wombat Lasiorhinus krefftii. Journal of Zoology 225, 605–613.
Dispersal and social organization of the northern hairy-nosed wombat Lasiorhinus krefftii.Crossref | GoogleScholarGoogle Scholar |

Johnson, C., and Payne, A. (2002). Sex-biased dispersal in the rufous bettong Aepyprymnus rufescens. Australian Mammalogy 24, 233–236.
Sex-biased dispersal in the rufous bettong Aepyprymnus rufescens.Crossref | GoogleScholarGoogle Scholar |

King, W. J., Garant, D., and Festa-Bianchet, M. (2015). Mother–offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos. Ecology and Evolution 5, 2084–2094.
Mother–offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos.Crossref | GoogleScholarGoogle Scholar |

Koenig, W. D., Van Vuren, D., and Hooge, P. N. (1996). Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends in Ecology & Evolution 11, 514–517.
Detectability, philopatry, and the distribution of dispersal distances in vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGksw%3D%3D&md5=838e3629bf53ed632f08528ace55c9d1CAS |

Konovalov, D. A., and Heg, D. I. K. (2008). TECHNICAL ADVANCES: A maximum-likelihood relatedness estimator allowing for negative relatedness values. Molecular Ecology Resources 8, 256–263.
TECHNICAL ADVANCES: A maximum-likelihood relatedness estimator allowing for negative relatedness values.Crossref | GoogleScholarGoogle Scholar |

Liberg, O., and von Schantz, T. (1985). Sex-biased philopatry and dispersal in birds and mammals: the Oedipus hypothesis. American Naturalist 126, 129–135.
Sex-biased philopatry and dispersal in birds and mammals: the Oedipus hypothesis.Crossref | GoogleScholarGoogle Scholar |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=d1d5c76c41013e58257d3a764486a01fCAS |

Neaves, L. E., Zenger, K. R., Prince, R. I. T., Eldridge, M. D. B., and Cooper, D. W. (2009). Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Molecular Ecology 18, 3363–3378.
Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKmsr%2FN&md5=2d64f288870dedceca6be214e9d14784CAS |

Neaves, L. E., Zenger, K. R., Prince, R. I. T., and Eldridge, M. D. B. (2012). Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus. Journal of Biogeography 39, 1545–1563.
Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar |

Neaves, L. E., Zenger, K. R., Prince, R. I. T., and Eldridge, M. D. B. (2013). Paternally inherited genetic markers reveal new insights into genetic structuring within Macropus fuliginosus and hybridisation with sympatric Macropus giganteus. Australian Journal of Zoology 61, 58–68.
Paternally inherited genetic markers reveal new insights into genetic structuring within Macropus fuliginosus and hybridisation with sympatric Macropus giganteus.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2006). GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbjI&md5=f36d0bcb5d48b2df5606e724dad5896fCAS |

Pérez-Espona, S., Pérez-Barbería, F. J., Jiggins, C. D., Gordon, I. J., and Pemberton, J. M. (2010). Variable extent of sex-biased dispersal in a strongly polygynous mammal. Molecular Ecology 19, 3101–3113.
Variable extent of sex-biased dispersal in a strongly polygynous mammal.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P., Banks, S. C., and Taylor, A. C. (2006). Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Molecular Ecology 15, 93–105.
Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt78%3D&md5=d460625bcbf100da1afbc02e42ff2488CAS |

Polzin, T., and Daneshmand, S. V. (2003). On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31, 12–20.
On Steiner trees and minimum spanning trees in hypergraphs.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Sharp, A., and Moritz, C. (1996). Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Molecular Ecology 5, 629–640.
Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsValsb4%3D&md5=774267e8bc691038a569a996792ec7c0CAS |

Pope, L. C., Vernes, K., Goldizen, A. W., and Johnson, C. N. (2012). Mating system and local dispersal patterns of an endangered potoroid, the northern bettong (Bettongia tropica). Australian Journal of Zoology 60, 278–287.
Mating system and local dispersal patterns of an endangered potoroid, the northern bettong (Bettongia tropica).Crossref | GoogleScholarGoogle Scholar |

Queller, D. C., and Goodnight, K. F. (1989). Estimating relatedness using genetic markers. Evolution 43, 258–275.
Estimating relatedness using genetic markers.Crossref | GoogleScholarGoogle Scholar |

Sigg, D. P. (2004). Population genetics and mating system in the single remnant and translocated population of the endangered bridled nailtail wallaby, Onychogalea fraenata. Ph.D. Thesis, University of Queensland, Brisbane.

Sigg, D. P., Goldizen, A. W., and Pople, A. R. (2005). The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biological Conservation 123, 289–300.
The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends in Ecology & Evolution 15, 199–203.
Efficient genetic markers for population biology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbhvFGqsg%3D%3D&md5=034cdf23f4cc7527733644f734cdc84dCAS |

Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research 24, 3189–3194.
Reliable genotyping of samples with very low DNA quantities using PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslyrtLs%3D&md5=0abce3924a97b228ab37580c071ff6ddCAS |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 1:CAS:528:DyaK3sXks1CksL4%3D&md5=52da91bbbc565989adbf2fc47b9936b8CAS |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2e26a85d4444a96ecf9e43e64d4328a6CAS |

Taylor, A. C., Horsup, A., Johnson, C. N., Sunnucks, P., and Sherwin, B. (1997). Relatedness structure detected by microsatellite analysis and attempted pedigree reconstruction in an endangered marsupial, the northern hairy-nosed wombat Lasiorhinus krefftii. Molecular Ecology 6, 9–19.
Relatedness structure detected by microsatellite analysis and attempted pedigree reconstruction in an endangered marsupial, the northern hairy-nosed wombat Lasiorhinus krefftii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVCktg%3D%3D&md5=020103e2bd2cec121e802dbe336770daCAS |

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=ace6feefe6b86ec2ca6b5d1c490ab928CAS |

Van Dyck, S., and Strahan, R. (2008). ‘The Mammals of Australia.’ 3rd edn. (Reed New Holland Publishers: Sydney.)

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHEKCER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHEKCER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=9cd3b93c23d1169be30f5281343cfa4eCAS |

Walker, F. M., Taylor, A. C., and Sunnucks, P. (2008). Female dispersal and male kinship-based association in southern hairy-nosed wombats (Lasiorhinus latifrons). Molecular Ecology 17, 1361–1374.
Female dispersal and male kinship-based association in southern hairy-nosed wombats (Lasiorhinus latifrons).Crossref | GoogleScholarGoogle Scholar |

Zenger, K. R., and Cooper, D. W. (2001a). Characterization of 14 macropod microsatellite genetic markers. Animal Genetics 32, 166–167.
Characterization of 14 macropod microsatellite genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1egtbw%3D&md5=185ad175488124bda353f44148a7f10aCAS |

Zenger, K. R., and Cooper, D. W. (2001b). A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus). Molecular Ecology Notes 1, 98–100.
A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaksbc%3D&md5=f747d8f05161381736054634e903e534CAS |

Zenger, K. R., Eldridge, M. D. B., and Cooper, D. W. (2003). Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus). Heredity 91, 153–162.
Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKju74%3D&md5=8c06a745d9774d7b8cff60f036a41434CAS |