Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Walking on five legs: investigating tail use during slow gait in kangaroos and wallabies

Rebekah S. Dawson A D , Natalie M. Warburton B C , Hazel L. Richards A and Nick Milne A
+ Author Affiliations
- Author Affiliations

A School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia.

B School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

C Department of Earth and Planetary Sciences, Western Australian Museum, Welshpool, WA 6106, Australia.

D Corresponding author. Email: rebekah.dawson@uwa.edu.au

Australian Journal of Zoology 63(3) 192-200 https://doi.org/10.1071/ZO15007
Submitted: 18 February 2015  Accepted: 7 July 2015   Published: 28 July 2015

Abstract

Pentapedal locomotion is the use of the tail as a fifth leg during the slow gait of kangaroos. Although previous studies have informally noted that some smaller species of macropodines do not engage in pentapedal locomotion, a systematic comparative analysis of tail use during slow gait across a wide range of species in this group has not been done. Analysis of relative movement of the pelvis, tail, and joint angles of the lower limbs during slow gait, using 2D landmark techniques on video recordings, was carried out on 16 species of Macropodinae. We also compared the relative lengthening of the tibia using crural index (CI) to test whether hindlimb morphology was associated with pentapedal locomotion. Pentapedal locomotion was characterised by three features: the presence of the ‘tail repositioning phase’, the constant height of the pelvis and the stationary placement of the distal tail on the ground during the hindlimb swing phase. The mean CI of pentapedal species was significantly greater than that of non-pentapedal species (1.71 versus 1.36; P < 0.001). This lends support to the hypothesis that the use of pentapedal locomotion is associated with the relative lengthening of the hindlimb, which in turn is associated with body size and habitat preference within the Macropodinae.

Additional keywords: crural index, Macropus, Onychogalea, pentapedal locomotion, Petrogale, quadrupedal bounding, Setonix, Thylogale.


References

Alexander, R. M. (1982). ‘Locomotion of Animals.’ (Blackie & Son Limited: London.)

Alexander, R. M. (1989). Mechanics of fossil vertebrates. Journal of the Geological Society 146, 41–52.
Mechanics of fossil vertebrates.Crossref | GoogleScholarGoogle Scholar |

Alexander, R. M. (2003). ‘Principles of Animal Locomotion.’ (Princeton University Press: Princeton, NJ.)

Alexander, R. M., and Vernon, A. (1975). The mechanics of hopping by kangaroos (Macropodineae). Journal of Zoology 177, 265–303.
The mechanics of hopping by kangaroos (Macropodineae).Crossref | GoogleScholarGoogle Scholar |

Anyonge, W. (1996). Locomotor behaviour in Plio-Pleistocence in sabre-tooth cats: a biomechanical analysis. Journal of Zoology 238, 395–413.
Locomotor behaviour in Plio-Pleistocence in sabre-tooth cats: a biomechanical analysis.Crossref | GoogleScholarGoogle Scholar |

Baudinette, R. V. (1977). Locomotory energetics in a marsupial, Setonix brachyurus. Australian Journal of Zoology 25, 423–428.
Locomotory energetics in a marsupial, Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar |

Baudinette, R. V. (1989). The biomechanics and energetics of locomotion in Macropodoidea. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. J. Jarman and I. D. Hume.) pp. 245–253. (Surrey Beatty: Sydney.)

Baudinette, R. V. (1994). Locomotion in Macropodoid marsupials: gaits, energetics and heat balance. Australian Journal of Zoology 42, 103–123.

Baudinette, R. V., Snyder, G. K., and Frappell, P. B. (1992). Energetic cost of locomotion in the tammar wallaby. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 262, R771–R778.
| 1:STN:280:DyaK383nt1aqtg%3D%3D&md5=c2affdfb5650fdd14ac8b2690bda83caCAS |

Baverstock, P. R., Richardson, B. J., Birrell, J., and Krieg, M. (1989). Albumin immunologic relationships of the Macropodidae (Marsupialia). Systematic Zoology 38, 38–50.
Albumin immunologic relationships of the Macropodidae (Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Bennett, M. B. (1987). Fast locomotion of some kangaroos. Journal of Zoology 212, 457–464.
Fast locomotion of some kangaroos.Crossref | GoogleScholarGoogle Scholar |

Cardillo, M., Bininda-Emonds, O. R. P., Boakes, E., and Purvis, A. (2004). A species-level phylogenetic supertree of marsupials. Journal of Zoology 264, 11–31.
A species-level phylogenetic supertree of marsupials.Crossref | GoogleScholarGoogle Scholar |

Davenport, C. B. (1933). The crural index. American Journal of Physical Anthropology 17, 333–353.

Dawson, T. J. (1977). Kangaroos. Scientific American 237, 78–89.
Kangaroos.Crossref | GoogleScholarGoogle Scholar |

Dawson, T. J. (2012). ‘Kangaroos.’ (CSIRO Publishing: Melbourne.)

Dawson, T. J., and Taylor, C. R. (1973). Energetic cost of locomotion in kangaroos. Nature 246, 313–314.
Energetic cost of locomotion in kangaroos.Crossref | GoogleScholarGoogle Scholar |

Flannery, T. F. (1982). Hindlimb structure and evolution in the kangaroos (Marsupialia: Macropodoidea). In ‘The Fossil Vertebrate Record of Australia’. (Eds P. V. Rich and E. M. Thompson.) pp. 508–524. (Monash University: Melbourne.)

Flannery, T. F. (1989). Phylogeny of the Macropodoidea; a study in convergence. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. J. Jarman and I. D. Hume.) pp. 117–128. (Surrey Beatty: Sydney.)

Grand, T. I. (1990). Body composition and the evolution of the Macropodineae (Potorous, Dendrolagus and Macropus). Anatomy and Embryology 182, 85–92.
Body composition and the evolution of the Macropodineae (Potorous, Dendrolagus and Macropus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2Flt1Citg%3D%3D&md5=911229d913259e5834a162d486eed96dCAS | 2240596PubMed |

Groves, C. P., and Flannery, T. F. (1989). Revision of the genus Dorcopsis (Macropodineae: Marsupialia). In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. J. Jarman and I. D. Hume.) pp. 117–128. (Surrey Beatty: Sydney.)

Hayes, G., and Alexander, R. M. (1983). The hopping gaits of crows (Corvidae) and other bipeds. Journal of Zoology 200, 205–213.
The hopping gaits of crows (Corvidae) and other bipeds.Crossref | GoogleScholarGoogle Scholar |

Hildebrand, M. (1974). ‘Analysis of Vertebrate Structure.’ (John Wiley & Sons: Sydney.)

Howell, A. B. (1944). ‘Speed in Animals.’ (The University of Chicago Press: Chicago.)

Kawata, K. (1971). A note on the function of the tail in the Macropodinae. International Zoo Yearbook 11, 23.
A note on the function of the tail in the Macropodinae.Crossref | GoogleScholarGoogle Scholar |

Kear, B., Lee, M. S. Y., Gerdtz, W. R., and Flannery, T. F. (2008). Evolution of hind limb proportions in kangaroos (Marsupialia: Macropodoidea). In ‘Mammalian Evolutionary Morphology: a Tribute to Frederick S. Szalay’. (Eds E. J. Sargis and M. Dagosto.) pp. 25–35. (Springer: Netherlands.)

Kirsch, J. A. W., Lapointe, F., and Foeste, A. (1995). Resolution of portions of the kangaroo phylogeny (Marsupialia: Macropodidae) using DNA hybridisation. Biological Journal of the Linnean Society 55, 309–328.
Resolution of portions of the kangaroo phylogeny (Marsupialia: Macropodidae) using DNA hybridisation.Crossref | GoogleScholarGoogle Scholar |

McGowan, C. P., Baudinette, R. V., Usherwood, J. R., and Biewener, A. A. (2005). The mechanics of jumping versus steady hopping in yellow-footed rock wallabies. The Journal of Experimental Biology 208, 2741–2751.
The mechanics of jumping versus steady hopping in yellow-footed rock wallabies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzkvVymsw%3D%3D&md5=c73c47b479882b2e3ba660aed7c1ff7bCAS | 16000543PubMed |

McGowan, C. P., Baudinette, R. V., and Biewener, A. A. (2008a). Differential design for hopping in two species of wallabies. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150, 151–158.
Differential design for hopping in two species of wallabies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czot1ensw%3D%3D&md5=80ef04c583244c0c6d12ed3bb8de78f8CAS |

McGowan, C. P., Skinner, J., and Biewener, A. A. (2008b). Hindlimb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings. Journal of Anatomy 212, 153–163.
Hindlimb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2Fps1Omtg%3D%3D&md5=c4480dc873acca7dd92975f53f3647f8CAS | 18086129PubMed |

Meredith, R. W., Westerman, M., and Springer, M. (2008). A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences. Australian Journal of Zoology 56, 395–410.
A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFWrtLs%3D&md5=851fd6b763f7925b24e80addaca13412CAS |

O’Connor, S. M., Dawson, T. J., Kram, R., and Donelan, J. M. (2014). The kangaroo’s tail propels and powers pentapedal locomotion. Biology Letters 10, 1–4.
The kangaroo’s tail propels and powers pentapedal locomotion.Crossref | GoogleScholarGoogle Scholar |

Polk, J. D. (2004). Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins. Journal of Human Evolution 47, 237–252.
Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cvos1aqsw%3D%3D&md5=1004d1a7d446667eb443c4f367bc3ed3CAS | 15454335PubMed |

Prideaux, G. J., and Warburton, N. M. (2010). An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (Macropodineae: Marsupialia). Zoological Journal of the Linnean Society 159, 954–987.
An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (Macropodineae: Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Raven, H. C., and Gregory, W. K. (1946). Adaptive branching of the kangaroo family in relation to habitat. American Museum Novitates 1309, 1–33.

Rohlf, F. J. (2013). tpsDIG2. (State University of New York, Stony Brook: New York.)

Samuels, J. X., Meachen, J. A., and Sakai, S. A. (2013). Postcranial morphology and the locomotor habits of living and extinct carnivorans. Journal of Morphology 274, 121–146.
Postcranial morphology and the locomotor habits of living and extinct carnivorans.Crossref | GoogleScholarGoogle Scholar | 22972188PubMed |

Sharman, G. B., and Maynes, G. M. (1983). Rock-wallabies. In ‘The Australian Museum Complete Book of Australian Mammals’. (Ed. R. Strahan.) pp. 207–221. (Cornstalk Publishing: Australia.)

Strahan, R. (1983). Red-necked pademelon. In ‘The Australian Museum Complete Book of Australian Mammals’. p. 228. (Angus & Robertson Publishers: Sydney.)

Strahan, R. (1995). ‘The Mammals of Australia.’ (Reed New Holland: Sydney.)

Strasser, E. (1992). Hindlimb proportions, allometry, and biomechanics in Old World monkeys (Primates, Cercopithecidae). American Journal of Physical Anthropology 87, 187–213.
Hindlimb proportions, allometry, and biomechanics in Old World monkeys (Primates, Cercopithecidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387otV2guw%3D%3D&md5=812bf7068c086d52f8a3d780dad46ec1CAS | 1543245PubMed |

Usherwood, J. R., and Hubel, T. Y. (2012). Energetically optimal running requires torques about the centre of mass. Journal of the Royal Society: Interface 9, 2011–2015.
Energetically optimal running requires torques about the centre of mass.Crossref | GoogleScholarGoogle Scholar |

Warburton, N. M., and Prideaux, G. J. (2010). Functional pedal morphology of the extinct tree-kangaroo Bohra (Diprotodontia: Macropodidae). In ‘Macropods: The Biology of Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Coulson and M. D. B. Eldridge.) pp. 137–151. (CSIRO Publishing: Melbourne.)

Windsor, D. E., and Dagg, A. I. (1971). The gaits of the Macropodinae (Marsupialia). Journal of Zoology 163, 165–175.
The gaits of the Macropodinae (Marsupialia).Crossref | GoogleScholarGoogle Scholar |