Long-term persistence and vicariance within the Australian Monsoonal Tropics: the case of the giant cave and tree geckos (Pseudothecadactylus)
Paul M. Oliver A B D , Rebecca J. Laver A B , Katie L. Smith B and Aaron M. Bauer CA Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia.
B Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.
C Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
D Corresponding author. Email: Paul.Oliver@unimelb.edu.au
Australian Journal of Zoology 61(6) 462-468 https://doi.org/10.1071/ZO13080
Submitted: 7 October 2013 Accepted: 25 February 2014 Published: 10 April 2014
Abstract
The Australian Monsoonal Tropics (AMT) are one of the largest unbroken areas of savannah woodland in the world. The history of the biota of this region is poorly understood; however, data from fossil deposits indicate that the climate was more mesic in the past, and that biodiversity has been shaped by attenuation and turnover as arid conditions expanded and intensified through the Miocene and Plio-Pleistocene. The giant cave and tree geckos (Pseudothecadactylus) are distributed across three disjunct regions of relatively high rainfall in the AMT (the north-west Kimberley, the ‘Top End’, and Cape York). We present an analysis of the diversity and biogeography of this genus based on mitochondrial (ND2) and nuclear (RAG-1) loci. These data indicate that the three widely allopatric lineages of Pseudothecadactylus diverged around the mid-Miocene, a novel pattern of relatively long-term persistence that has not previously been documented within the AMT. Two Pseudothecadactylus species endemic to sandstone scarps in the west Kimberley Region and ‘Top End’ also include divergent mitochondrial lineages, indicative of deep intraspecific coalescence times within these regions. Pseudothecadactylus is a highly relictual lineage with an extant distribution that has been shaped by a history of attenuation, isolation and persistence in the face of increasingly arid conditions. The low ecological and morphological diversity of Pseudothecadactylus also contrasts with its diverse sister lineage of geckos in New Caledonia, further underlining the relictual nature of standing diversity in the former.
Additional keywords: aridification, Arnhemland, Cape York, climate change, Diplodactylidae, Kimberley, mesic refugia, New Caledonia.
References
Archer, M., Hand, S. J., and Godthelp, H. (1991). ‘Australia’s Lost World: Prehistoric Animals of Riversleigh.’ (Indiana University Press: Bloomington)Bauer, A. M. (1990). Phylogenetic systematics and biogeography of the Carphodactylini (Reptilia: Gekkonidae). Bonner zoologische Monographien 30, 1–220.
Bauer, A. M., Jackman, T. R., Sadlier, R. A., and Whitaker, A. H. (2012). Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus). Zootaxa 3404, 1–52.
Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
| Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |
Brandley, M. C., Wang, Y., Guo, X., Nieto Montes de Oca, A., Fería Ortíz, M., Hikada, T., and Ota, H. (2011). Accommodating heterogenous rates of evolution in molecular dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Systematic Biology 60, 3–15.
| Accommodating heterogenous rates of evolution in molecular dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGru77K&md5=543052f3f0315e51e738388bfb2ce7b7CAS | 20952756PubMed |
Cogger, H. G. (1975). New lizards of the genus Pseudothecadactylus (Lacertilia: Gekkonidae) from Arnhemland and northwestern Australia. Records of the Australian Museum 30, 87–97.
| New lizards of the genus Pseudothecadactylus (Lacertilia: Gekkonidae) from Arnhemland and northwestern Australia.Crossref | GoogleScholarGoogle Scholar |
Doughty, P., Anstis, M., and Price, L. (2009). A new species of Crinia (Anura: Myobatrachidae) from the high rainfall zone of the northwest Kimberley, Western Australia. Records of the Western Australian Museum 25, 127–144.
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |
Eldridge, M. D. B., Potter, S., and Cooper, S. J. B. (2011). Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature. Australian Journal of Zoology 59, 270–272.
| Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature.Crossref | GoogleScholarGoogle Scholar |
Grant-Mackie, J., Bauer, A. M., and Tyler, M. J. (2003). Stratigraphy and herpetofauna of Mé Auré Cave (Site WMD007), Moindou, New Caledonia. Les Cahiers de l’Archeologie en Nouvelle-Calédonie 15, 295–306.
Harrington, M. G., Jackes, B. R., Barrett, M. D., Craven, L. A., and Barrett, R. L. (2012). Phylogenetic revision of the Backhousieae (Myrtaceae): Neogene divergence, a revised circumscription of Backhousia and two new species. Australian Systematic Botany 25, 404–417.
| Phylogenetic revision of the Backhousieae (Myrtaceae): Neogene divergence, a revised circumscription of Backhousia and two new species.Crossref | GoogleScholarGoogle Scholar |
Heinicke, M. P., Greenbaum, E., Jackman, T. R., and Bauer, A. M. (2011). Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta 40, 584–602.
| Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia.Crossref | GoogleScholarGoogle Scholar |
Herold, N., Huber, M., Greenwood, D. R., and Seton, M. (2011). Early to middle Miocene monsoon climate in Australia. Geology 39, 3–6.
| Early to middle Miocene monsoon climate in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVantr4%3D&md5=eda0f89fc703fe509b24ad353d99d076CAS |
Hoskin, C. J., and Aland, K. (2011). Two new frog species (Microhylidae: Cophixalus) from boulder habitats on Cape York Peninsula, north-east Australia. Zootaxa 3027, 39–51.
Hoskin, C. J., and Higgie, M. (2008). A new species of velvet gecko (Diplodactylidae: Oedura) from north-east Queensland, Australia. Zootaxa 1788, 21–36.
Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
| MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=239ef0034ee362392713c4da0f12a9ebCAS | 11524383PubMed |
King, M. (1987). Origin of the Gekkonidae: chromosomal and albumin-evolution suggests Gondwanaland. Search 18, 252–254.
Ladiges, P. Y., Udovicic, F., and Nelson, G. (2003). Australian biogeographic connections and the phylogeny of large genera in the large plant family Myrtaceae. Journal of Biogeography 30, 989–998.
| Australian biogeographic connections and the phylogeny of large genera in the large plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=7b00db0d4d8de2b34032ea1c0108d86cCAS | 22319168PubMed |
Lee, M. S. Y., Oliver, P., and Hutchinson, M. N. (2009). Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae: Gekkota). Molecular Phylogenetics and Evolution 50, 661–666.
| Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae: Gekkota).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitF2qtLk%3D&md5=fa26a822db2b12789fb9f4fb57e1e512CAS |
Nielsen, S. V., Bauer, A. M., Jackman, T. R., Hitchmough, R. A., and Daugherty, C. H. (2011). New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Molecular Phylogenetics and Evolution 59, 1–22.
| New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities.Crossref | GoogleScholarGoogle Scholar | 21184833PubMed |
Oliver, P. M., and Sanders, K. (2009). Molecular evidence for Gondwanan origins of multiple lineages within a diverse Australasian gecko radiation. Journal of Biogeography 36, 2044–2055.
| Molecular evidence for Gondwanan origins of multiple lineages within a diverse Australasian gecko radiation.Crossref | GoogleScholarGoogle Scholar |
Oliver, P. M., Doughty, P., and Palmer, R. (2012a). Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley. Wildlife Research 39, 429–435.
| Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley.Crossref | GoogleScholarGoogle Scholar |
Oliver, P. M., Bauer, A. M., Greenbaum, E., Jackman, T., and Hobbie, T. (2012b). Molecular phylogenetic evidence for the paraphyly of the arboreal Australian gecko genus Oedura Gray 1842 (Gekkota: Diplodactylidae): yet another plesiomorphic grade? Molecular Phylogenetics and Evolution 63, 255–264.
| Molecular phylogenetic evidence for the paraphyly of the arboreal Australian gecko genus Oedura Gray 1842 (Gekkota: Diplodactylidae): yet another plesiomorphic grade?Crossref | GoogleScholarGoogle Scholar | 22209860PubMed |
Pepper, M., Fujita, M. K., Moritz, C., and Keogh, J. S. (2011). Paleoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology 20, 1529–1545.
| Paleoclimate change drove diversification among isolated mountain refugia in the Australian arid zone.Crossref | GoogleScholarGoogle Scholar | 21371147PubMed |
Potter, S., Eldridge, M. D. B., Taggart, D. A., and Cooper, S. J. B. (2012). Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Molecular Ecology 21, 2254–2269.
| Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies.Crossref | GoogleScholarGoogle Scholar | 22417115PubMed |
Russell-Smith, J., and Dunlop, C. (1987). The status of Monsoon Vine forests in the Northern Territory: a perspective. In ‘The Rainforest Legacy. Australian National Rainforests Study. Volume 1. The Nature, Distribution and Status of Rainforest Types’. pp. 227–288. (Australian Government Publishing Service: Canberra.)
Shea, G., Weigel, J., Harwood, A., Floriani, H., and Hemsley, C. (1988). Notes on the herpetofauna of the Mitchell Plateau, Western Australia. Results of the 1987 Australian Herpetological Society field trip to the Kimberleys. Herpetofauna 18, 9–19.
Smith, L. (1989). Taxonomic status of the gecko Pseudothecadactylus lindneri cavaticus Cogger. Records of the Western Australian Museum 14, 425–426.
Smith, K. L., Harmon, L. J., Shoo, L. P., and Melville, J. (2011). Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution 65, 976–992.
| Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards.Crossref | GoogleScholarGoogle Scholar | 21166790PubMed |
Stamatakis, A. (2006). RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=14a758041684a69f42c55edcfa41ce47CAS | 16928733PubMed |
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=e841dcb65bf5743a3261692bb5310fe6CAS | 21546353PubMed |
Travouillon, K. J., Legendre, S., Archer, M., and Hand, S. J. (2009). Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 24–37.
| Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia.Crossref | GoogleScholarGoogle Scholar |
Wilson, S., and Swan, G. (2013). ‘A Complete Guide to Reptiles of Australia.’ 4th edn. (New Holland Publishers: Sydney.)
Woinarski, J. C. Z., Hempel, C., Cowie, I., Brennan, K., Kerrigan, R., Leach, G., and Russell-Smith, J. (2006). Distributional patterns of plant species endemic to the Northern Territory, Australia. Australian Journal of Botany 54, 627–640.
| Distributional patterns of plant species endemic to the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |
Woinarski, J., Mackey, B., Nix, H., and Traill, B. (2007). ‘The Nature of Northern Australia: Natural Values, Ecological Processes and Future Prospects.’ (The Australian National University E Press: Canberra.)
Zamudio, K. R., and Greene, H. W. (1997). Phylogeography of the bushmaster (Lachesis muta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society 62, 421–442.