Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Predicting impacts of global climate change on intraspecific genetic diversity benefits from realistic dispersal estimates

Paul E. Duckett A B and Adam J. Stow A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

B Corresponding author. Email: paul.duckett@mq.edu.au

Australian Journal of Zoology 61(6) 454-461 https://doi.org/10.1071/ZO13097
Submitted: 13 November 2013  Accepted: 13 February 2014   Published: 3 March 2014

Abstract

Global climates are rapidly changing, which for many species will require dispersal to higher altitudes and latitudes to maintain favourable conditions. Changes in distribution for less mobile species is likely to be associated with losses to genetic diversity, yet this cannot be quantified without understanding which parts of a species distribution will colonise favourable regions in the future. To address this we adopted a realistic estimate of dispersal with predicted changes in species distributions to estimate future levels of intraspecific genetic diversity. Using 740 geckos (Gehyra variegata) collected across their distribution in central and eastern inland Australia, we predict genetic loss within phylogenetically distinct units at both mtDNA and microsatellite markers between 2010 and 2070. We found that using a quantified and realistic estimate of dispersal resulted in significant declines to allelic richness (5.114 to 4.052), haplotype richness (7.215 to 4.589) and phylogenetic diversity (0.012 to 0.005) (P < 0.01). In comparison, predicted losses were substantially over- or underestimated when commonly applied dispersal scenarios were utilised. Using biologically relevant estimates of dispersal will help estimate losses of intraspecific genetic diversity following climate change impacts. This approach will provide critical information for the management of species in the near future.

Additional keywords: conservation, modelling.


References

Alsos I. G. Ehrich D. Thuiller W. Eidesen P. B. Tribsch A. Schönswetter P. Lagaye C. Taberlet P. Brochmann C. 2012 Genetic consequences of climate change for northern plants. Proceedings of the Royal Society B: Biological Sciences 279 20422051

Araújo, M. B., and New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 42–47.
Ensemble forecasting of species distributions.Crossref | GoogleScholarGoogle Scholar |

Arenas, M., Ray, N., Currat, M., and Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Molecular Biology and Evolution 29, 207–218.
Consequences of range contractions and range shifts on molecular diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ynu77P&md5=9b2e257e8612dd99d8b39dc9f78fec7dCAS | 21778191PubMed |

Arenas, M., Francois, O., Currat, M., Ray, N., and Excoffier, L. (2013). Influence of admixture and paleolithic range contractions on current European diversity gradients. Molecular Biology and Evolution 30, 57–61.
Influence of admixture and paleolithic range contractions on current European diversity gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gtrzP&md5=a7c2dee3440c7d1bbc899ef33e51d912CAS | 22923464PubMed |

Balint, M., Domisch, S., Engelhardt, C. H. M., Haase, P., Lehrian, S., Sauer, J., Theissinger, K., Pauls, S. U., and Nowak, C. (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1, 313–318.
Cryptic biodiversity loss linked to global climate change.Crossref | GoogleScholarGoogle Scholar |

Beier, P., and Gregory, A. J. (2012). Desperately seeking stable 50-year old landscapes with patches and long, wide corridors. PLoS Biology 10, e1001253.
Desperately seeking stable 50-year old landscapes with patches and long, wide corridors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisV2mt74%3D&md5=fe52f5cc66555b3d8d21177e5f2e01a1CAS | 22303283PubMed |

Bohonak, A. J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology 74, 21–45.
Dispersal, gene flow, and population structure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7otFKltw%3D%3D&md5=240a4e514aa74078bf8a2d59173108cbCAS | 10081813PubMed |

Bustard, H. R. (1968). The ecology of the Australian gecko, Gehyra variegata, in northern New South Wales. Journal of Zoology 154, 113–138.
The ecology of the Australian gecko, Gehyra variegata, in northern New South Wales.Crossref | GoogleScholarGoogle Scholar |

Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27, 2576–2585.
Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography.Crossref | GoogleScholarGoogle Scholar |

CBD (1992). International Convention on Biological Diversity. Available at: www.cbd.int

Cogger, H. G. (2000). ‘Reptiles and Amphibians of Australia.’ (Reed New Holland: Sydney.)

Costa, G., Nogueira, C., Machado, R., and Colli, G. (2010). Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservation 19, 883–899.
Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
Considering evolutionary processes in conservation biology.Crossref | GoogleScholarGoogle Scholar |

Davis, M. B., and Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679.
Range shifts and adaptive responses to quaternary climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1elsrY%3D&md5=57804a8869fe37d7b7f9379ae358fec6CAS | 11326089PubMed |

Duckett, P. E., and Stow, A. (2010). Rapid isolation and characterisation of microsatellite loci from a widespread Australian gecko, the tree dtella, Gehyra variegata. Conservation Genetics Resources 2, 349–351.
Rapid isolation and characterisation of microsatellite loci from a widespread Australian gecko, the tree dtella, Gehyra variegata.Crossref | GoogleScholarGoogle Scholar |

Duckett, P. E., and Stow, A. J. (2012). Levels of dispersal and tail loss in an Australian gecko (Gehyra variegata) are associated with differences in forest structure. Australian Journal of Zoology 59, 170–176.
Levels of dispersal and tail loss in an Australian gecko (Gehyra variegata) are associated with differences in forest structure.Crossref | GoogleScholarGoogle Scholar |

Duckett, P. E., and Stow, A. J. (2013). Higher genetic diversity is associated with stable water refugia for a gecko with a wide distribution in arid Australia. Diversity & Distributions 19, 1072–1083.
Higher genetic diversity is associated with stable water refugia for a gecko with a wide distribution in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Duckett, P. E., Wilson, P. D., and Stow, A. J. (2013). Keeping up with the neighbours: using a genetic estimate of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (Gehyra variegata). Diversity & Distributions 19, 964–976.
Keeping up with the neighbours: using a genetic estimate of dispersal and species distribution modelling to assess the impact of climate change on an Australian arid zone gecko (Gehyra variegata).Crossref | GoogleScholarGoogle Scholar |

Engler, R., and Guisan, A. (2009). MigClim: predicting plant distribution and dispersal in a changing climate. Diversity & Distributions 15, 590–601.
MigClim: predicting plant distribution and dispersal in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservation Biology 10, 1500–1508.
Relationship of genetic variation to population size in wildlife.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2004). Introduction. In ‘Conservation Genetics’. 4th edn. (Cambridge University Press: Cambridge.)

Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |

Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity & Distributions 16, 321–330.
Moving beyond static species distribution models in support of conservation biogeography.Crossref | GoogleScholarGoogle Scholar |

Gienapp, P., Teplitsky, C., Alho, J.S., Mills, J.A., and Merilä, J (2008). Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology 17, 167–178.
Climate change and evolution: disentangling environmental and genetic responses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2Fgsl2muw%3D%3D&md5=a20133a8a0a9ad0f9080ee70f753d186CAS | 18173499PubMed |

Goudet, J. (2001). ‘FSTAT, a Program to Estimate Test Gene Diversities and Fixation Indices (Version 2.9.3)’.

Grenouillet, G., Buisson, L., Casajus, N., and Lek, S. (2011). Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17.
Ensemble modelling of species distribution: the effects of geographical and environmental ranges.Crossref | GoogleScholarGoogle Scholar |

Guisan, A., and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993–1009.
Predicting species distribution: offering more than simple habitat models.Crossref | GoogleScholarGoogle Scholar |

Gustafson, P., Hossain, S., and Macnab, Y. C. (2006). Conservative prior distributions for variance parameters in hierarchical models. The Canadian Journal of Statistics 34, 377–390.
Conservative prior distributions for variance parameters in hierarchical models.Crossref | GoogleScholarGoogle Scholar |

Habitats Directive of the European Union (1992). On the conservation of natural habitats and of wild fauna and flora. Council Directive 92/42/EEC. (ec.europe.eu/environment/nature/legislation/habitatsdirective)

Halverson, M. A., Skelly, D. K., and Caccone, A. (2006). Inbreeding linked to amphibian survival in the wild but not in the laboratory. The Journal of Heredity 97, 499–507.
Inbreeding linked to amphibian survival in the wild but not in the laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OjsbvL&md5=8ddb5cb804069f66d0d3bae07b8249eeCAS | 16957048PubMed |

Heller, N. E., and Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation 142, 14–32.
Biodiversity management in the face of climate change: a review of 22 years of recommendations.Crossref | GoogleScholarGoogle Scholar |

Henle, K. (1990). Population ecology and life history of the arboreal gecko Gehyra variegata in arid Australia. Herpetological Monograph 4, 30–60.
Population ecology and life history of the arboreal gecko Gehyra variegata in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society of London 58, 247–276.

Hoehn, M., and Sarre, S. (2006). Microsatellite DNA markers for Australian geckos. Conservation Genetics 7, 795–798.
Microsatellite DNA markers for Australian geckos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWgtLrK&md5=aa982d4037ff17f457a8b93903834ae9CAS |

Hoffmann, A. A., and Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews: Genetics 9, 421–432.
Detecting genetic responses to environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrtLw%3D&md5=ac13c94633da6fab0d1402d9793934acCAS | 18463665PubMed |

Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology 28, 423–443.
Climate change and Australia: trends, projections and impacts.Crossref | GoogleScholarGoogle Scholar |

IPCC (2001). ‘Intergovernmental Panel on Climate Change – Third Assessments Report of Working Group I: The Science of Climate Change.’ (Cambridge University Press: Cambridge.)

IPCC (2007). Summary for Policymakers. In ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller.) pp. 13–18. (Cambridge University Press: Cambridge.)

Johansson, M., Primmer, C. R., and Merilä, J (2007). Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria). Molecular Ecology 16, 2693–2700.
Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria).Crossref | GoogleScholarGoogle Scholar | 17594440PubMed |

Kearney, M. R., Wintle, B. A., and Porter, W. P. (2010). Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters 3, 203–213.
Correlative and mechanistic models of species distribution provide congruent forecasts under climate change.Crossref | GoogleScholarGoogle Scholar |

Lunt, D. I., Byrne, M., Hellmann, J. J., Mitchell, N. J., Garnett, S. T., Hayward, M. W., Martine, T. G., McDonald-Madden, E., Williams, S. E., and Zander, K. K. (2013). Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biological Conservation 157, 172–177.
Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change.Crossref | GoogleScholarGoogle Scholar |

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., and Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity & Distributions 15, 59–69.
Evaluation of consensus methods in predictive species distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Moritz, C. (1994). Defining ‘Evolutionary Significant Units’. Trends in Ecology & Evolution 9, 373–375.
Defining ‘Evolutionary Significant Units’.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=807e9b1c6637836734c00157ce889224CAS |

Moritz, C. (1999). Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130, 217–228.
Conservation units and translocations: strategies for conserving evolutionary processes.Crossref | GoogleScholarGoogle Scholar |

Natural Resource Management Ministerial Council (2010). Australia’s Biodiversity Conservation Strategy 2010–2030. Department of the Environment. Available at: www.environment.gov.au/node/14488

Oppel, S., Meirinho, A., Ramirez, I., Gardner, B., O’Connell, A. F., Miller, P. I., and Louzao, M. (2012). Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation 156, 94–104.
Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Nowak, C., Bálint, M., and Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22, 925–946.
The impact of global climate change on genetic diversity within populations and species.Crossref | GoogleScholarGoogle Scholar | 23279006PubMed |

Peakall, R. O. D., and Smouse, P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Phillips, B. L., Brown, G. P., Travis, J. M. L., and Shine, R. (2008). Reid’s paradox revisited: the evolution of dispersal kernels during range expansion. American Naturalist 172, 34–48.
Reid’s paradox revisited: the evolution of dispersal kernels during range expansion.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=49d1e8ce46168e568add0785b4abd1d2CAS | 9918953PubMed |

Reed, D. H., and Frankham, R. (2001). How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 1095–1103.
| 1:STN:280:DC%2BD38%2FisFWitA%3D%3D&md5=c42a7f3a1a9bbbd864a40c76ecbdb68aCAS | 11475045PubMed |

Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237.
Correlation between fitness and genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=544b296d48ad75d42c45092f433e09b6CAS | 12912839PubMed |

Schneider, C. J., Cunningham, M., and Moritz, C. (1998). Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Molecular Ecology 7, 487–498.
Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia.Crossref | GoogleScholarGoogle Scholar |

Sinervo, B., Méndez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De la Riva, I. J., Sepulveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J., and Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899.
Erosion of lizard diversity by climate change and altered thermal niches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVeltrY%3D&md5=eefc19c0acd58be53ca31ba0b3a6ecd0CAS | 20466932PubMed |

Slatkin, M., and Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43, 1349–1368.

Strasburg, J. L., and Kearney, M. (2005). Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridization. Molecular Ecology 14, 2755–2772.
Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Cju74%3D&md5=d0e6fbd538a70796ed1b5359aabf06a4CAS | 16029476PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=e841dcb65bf5743a3261692bb5310fe6CAS | 21546353PubMed |

Taubmann, J., Theissinger, K., Feldheim, K., Laube, I., Graf, W., Haase, P., Johannesen, J., and Pauls, S. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics 12, 503–515.
Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios.Crossref | GoogleScholarGoogle Scholar |

Tavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society 17, 57–86.

Taylor, M., and Figgis, P. (2007). Protected Areas: buffering nature against climate change – overview and recommendations. In ‘Protected Areas: Buffering Nature Against Climate Change. Proceedings of a WWF and IUCN World Commission on Protected Areas Symposium, 18–19 June 2007, Canberra’. (Eds M. Taylor, and P. Figgis.) pp. 1–12. (WWF-Australia: Sydney.)

Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., and Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102, 8245–8250.
Climate change threats to plant diversity in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2mt7k%3D&md5=f1e4161589966b8974b2977d63e26c30CAS | 15919825PubMed |

Tol, R. (2005). Select Committee on Economic Affairs Minutes of Evidence (15 January 2005). “Memorandum by Professor Richard S J Tol, Hamburg, Vrije and Carnegie Mellon Universities. In (report): The Economics of Climate Change, the Second Report of the 2005–2006 session, produced by the UK Parliament House of Lords Economics Affairs Select Committee”. UK Parliament website. Accessed 2011-03-27.

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D. B., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 22287981PubMed |

Wright, S. (1943). Isolation by distance. Genetics 28, 114–138.
| 1:STN:280:DC%2BD2s%2FmsFSmsg%3D%3D&md5=491633a44fb61bb3f2a70f6fc4b2ee7aCAS | 17247074PubMed |

Wright, S. (1969). ‘Evolution and the Genetics of Populations. Volume 2. The Theory of Gene Frequencies.’ (University of Chicago Press: Chicago.)