Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Composition of the milk of the quokka (Setonix brachyurus)

S. J. Miller A C , R. Bencini A and P. E. Hartmann B
+ Author Affiliations
- Author Affiliations

A School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Corresponding author. Email: sue.miller@uwa.edu.au

Australian Journal of Zoology 57(1) 11-21 https://doi.org/10.1071/ZO08065
Submitted: 7 August 2008  Accepted: 23 February 2009   Published: 3 April 2009

Abstract

We investigated the composition of the milk of the quokka between 70 and 300 days post partum. From 70 to 180 days, the mean concentration of protein in the milk was 63.5 ± 6.50 g L−1. The protein levels then began to increase, peaking at 120 g L−1 towards the end of lactation. The mean lipid and total solids content were 45.0 ± 6.50 and 175.0 ± 11.77 g L−1 from 70–180 days, increasing to 150 and 250 g L−1 after permanent pouch exit. In contrast, the total carbohydrate concentration of the milk decreased from 80 to 20 g L−1 at 150 days. The concentration of lactose started to decrease at 180 days from 30 to 10 g L−1, and galactose and glucose began to rise from 1 to 9 g L−1 and 0.5 to 4.0 g L−1, respectively. The milk lipid consisted mainly of long- and medium-chain fatty acids, with no short-chain fatty acids detected. The major fatty acids present were palmitic and oleic acids, followed by linoleic, trans-vaccenic and stearic acids. The percentage composition of oleic and stearic acids varied significantly during lactation. The composition of the milk of the quokka changed during lactation, coincident with the young reaching critical milestones in its development. This finding supports the hypothesis that the composition of the milk changes to meet the nutritional needs of the developing young.


Acknowledgements

The authors thank Mr Peter Cowl, Dr Ching T. Lai and Ms Tracey Williams for their technical assistance, and Medela AG for research funding.


References

Alacs, E. , Alpers, D. , de Tores, P. J. , Dillon, M. , and Spencer, P. B. S. (2003). Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces. Wildlife Research 30, 41–47.
Crossref | GoogleScholarGoogle Scholar | Bergmeyer H. U. , and Bernt E. (1974). D-glucose: determination with glucose oxidase and peroxidase. In ‘Methods of Enzymatic Analysis. Vol. 3’. (Ed. H. U. Bergmeyer.) pp. 1205–1215. (Verlag Chemie: Weinheim.)

Berry E. M. (1997). The biological properties of oleic acid. In ‘Handbook of Essential Fatty Acid Biology’. (Eds S. Yehuda and D. I. Mostofsky.) pp. 89–101. (Humana Press: Totowa, NJ.)

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Christensen P. , Annels A. , Liddelow G. , and Skinner P. (1985). Vertebrate Fauna in the Southern Forests of Western Australia: A Survey. Forests Department of Western Australia, Perth.

Christie W. W. (1973). ‘Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids.’ (Pergamon Press: Oxford.)

Cowan, P. E. (1989). Changes in milk composition during lactation in the common brushtail possum, Trichosurus vulpecula (Marsupialia: Phalangeridae). Reproduction, Fertility and Development 1, 325–335.
Crossref | GoogleScholarGoogle Scholar | CAS | Czank C. , Mitoulas L. R. , and Hartmann P. E. (2007). Human milk composition – fat. In ‘Textbook of Human Lactation’. (Eds T. W. Hale and P. E. Hartmann.) pp. 49–67. (Hale Publishing: Amarillo, TX.)

Delaney, R. (1997). Reproductive ecology of the allied rock-wallaby, Petrogale assimilis. Australian Mammalogy 19, 209–218.
Green B. , and Merchant J. C. (1988). The composition of marsupial milk. In ‘The Developing Marsupial: Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 41–54. (Springer-Verlag: Berlin.)

Green, B. , Newgrain, K. , and Merchant, J. (1980). Changes in milk composition during lactation in the tammar wallaby (Macropus eugenii). Australian Journal of Biological Sciences 33, 35–42.
CAS | PubMed | Gurr M. I. , Harwood J. L. , and Frayn K. N. (2002). ‘Lipid Biochemistry.’ (Blackwell Science: Oxford.)

Hartman, L. , Shorland, F. B. , and McDonald, I. R. C. (1955). The trans-unsaturated acid contents of fats of ruminants and non-ruminants. The Biochemical Journal 61, 603–607.
CAS | PubMed | Iverson S. J. , and Oftedal O. T. (1995). Comparative analysis of nonhuman milks. B. Phylogenetic and ecological variation in the fatty acid composition of milks. In ‘Handbook of Milk Composition’. (Ed. R. G. Jensen.) pp. 789–827. (Academic Press: San Diego, CA.)

Janssens P. A. , and Messer M. (1988). Changes in nutritional metabolism during weaning. In ‘The Developing Marsupial: Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 162–175. (Springer-Verlag: Berlin.)

Janssens P. A. , and Ternouth J. H. (1987). The transition from milk to forage diets. In ‘Nutrition of Herbivores’. (Eds J. B. Hacker and J. H. Ternouth.) pp. 281–305. (Academic Press Australia: Sydney.)

Janssens, P. A. , Jenkinson, L. A. , Paton, B. C. , and Whitelaw, E. (1977). The regulation of gluconeogenesis in pouch young of the tammar wallaby, Macropus eugenii (Desmarest). Australian Journal of Biological Sciences 30, 183–195.
CAS | PubMed | Kitchener D. J. (1998). Quokka, Setonix brachyurus. In ‘The Mammals of Australia’. (Ed. R. Strahan.) pp. 401–403. (New Holland Publishers: Sydney.)

Kneebone, G. M. , Kneebone, R. , and Gibson, R. A. (1985). Fatty acid composition of breast milk from three racial groups from Penang, Malaysia. The American Journal of Clinical Nutrition 41, 765–769.
CAS | PubMed | Messer M. , Crisp E. A. , and Czolij R. (1989). Lactose digestion in suckling macropodids. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 217–221. (Surrey Beatty: Sydney.)

Mitoulas, L. R. , Gurrin, L. C. , Doherty, D. A. , Sherriff, J. L. , and Hartmann, P. E. (2003). Infant intake of fatty acids from human milk over the first year of lactation. The British Journal of Nutrition 90, 979–986.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Newburg D. S. , and Neubauer S. H. (1995). Carbohydrates in milks: analysis, quantities, and significance. In ‘Handbook of Milk Composition’. (Ed. R. G. Jensen.) pp. 273–349. (Academic Press: San Diego, CA.)

Nicholas, K. R. , Simpson, K. J. , Wilson, M. , Trott, J. , and Shaw, D. (1997). The tammar wallaby: a model to study putative autocrine-induced changes in milk composition. Journal of Mammary Gland Biology and Neoplasia 2, 299–310.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Tyndale-Biscoe C. H. , and Janssens P. A. (1988). Introduction. In ‘The Developing Marsupial: Models for Biomedical Research’. (Eds C. H. Tyndale-Biscoe and P. A. Janssens.) pp. 1–7. (Springer-Verlag: Berlin.)

VandeBerg, J. L. (1990). The gray short-tailed opossum (Monodelphis domestica) as a model didelphid species for genetic research. Australian Journal of Zoology 37, 235–247.
Crossref | GoogleScholarGoogle Scholar |

Vernon, J. K. , Messer, M. , and Green, B. (1981). Enzymes of galactose metabolism in livers of suckling and adult tammar wallabies (Macropus eugenii) and other marsupials. Australian Journal of Biological Sciences 34, 401–409.
CAS | PubMed |

Yadav, M. , Stanley, N. F. , and Waring, H. (1972). The microbial flora of the gut of the pouch-young and the pouch of a marsupial, Setonix brachyurus. Journal of General Microbiology 70, 437–442.
CAS | PubMed |