Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Is body shape of varanid lizards linked with retreat choice?

Graham G. Thompson A F , Christofer J. Clemente B , Philip C. Withers C , Bryan G. Fry D and Janette A. Norman E
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia.

B Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

C Zoology, School of Animal Biology (M092), University of Western Australia, Crawley, WA 6009, Australia.

D Department of Biochemistry, Bio21 Institute, University of Melbourne, Vic. 3010, Australia.

E Population and Evolutionary Genetics Unit, Sciences Department, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.

F Corresponding author. Email: g.thompson@ecu.edu.au

Australian Journal of Zoology 56(5) 351-362 https://doi.org/10.1071/ZO08030
Submitted: 18 March 2008  Accepted: 14 January 2009   Published: 3 March 2009

Abstract

In our earlier analysis of Varanus body shape, size was a dominating factor with some qualitative phylogenetic patterns and grouping of species into ecological categories. With a phylogeny and an improved capacity to account for the effects of size, we have reanalysed our morphometric data for male Australian goannas (Varanus spp.) using an increased number of specimens and species to examine whether variations in body shape can be accounted for by retreat choice, as it can for Western Australian Ctenophorus dragon lizards. After accounting for body size in the current analysis, four ecotypes based on retreat choice (i.e. those that retreat to oblique crevices between large rocks or rock faces, those that retreat to burrows dug into the ground, those that retreat to spaces under rocks or in tree hollows, and those that retreat to trees but not tree hollows) accounted for much of the variation in body shape. There is a phylogenetic pattern to the ecotypes, but accounting for phylogenetic effects did not weaken the link between body shape and ecotype based on retreat choice. This suggests that there are large differences in body shape among ecotypes, and shape is relatively independent of phylogeny. The strong link between shape and choice of retreat site in Varanus spp. is consistent with that for Ctenophorus spp. We speculate on why there might be a strong link between retreat choice and body shape for both Varanus and Ctenophorus.


References

Arnold E. N. (1988). Caudal autotomy as a defense. In ‘Biology of the Reptilia. Vol. 16’. (Eds C. Gans and R. B. Huey.) pp. 235–274. (Liss: New York.)

Arnold, S. J. (1983). Morphology, performance and fitness. Integrative and Comparative Biology 23, 347–361.
Crossref | GoogleScholarGoogle Scholar | Bookstein F. , Chernoff B. , Elder R. , Humphries J. , Smith G. , and Strauss R. (1985). ‘Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, with Examples from Fishes.’ (Academy of Natural Sciences of Philadelphia: Philadelphia, PA.)

Card, W. , and Kluge, A. G. (1995). Hemipeneal skeleton and varanid lizard systematics. Journal of Herpetology 29, 275–280.
Crossref | GoogleScholarGoogle Scholar | Christian K. (2004). Varanus panoptes. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 423–429. (Indiana University Press: Bloomington, IN.)

Clemente C. (2007). Evolution of locomotion in Australian varanid lizards (Reptilia: Squamata: Varanidae): ecomorphological and ecophysiological considerations. Ph.D. Thesis, University of Western Australia, Perth.

Cogger H. (1992). ‘Reptiles and Amphibians of Australia.’ (Reed: Sydney.)

Dryden G. (2004). Varanus acanthurus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 298–307. (Indiana University Press: Bloomington, IN.)

Dryden G. , and Ziegler T. (2004). Varanus indicus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 184–188. (Indiana University Press: Bloomington, IN.)

Eidenmuller B. (2004). Varanus storri. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 472–476. (Indiana University Press: Bloomington, IN.)

Filatov, D. A. (2002). Analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621–624.
Crossref | GoogleScholarGoogle Scholar | CAS | Garland T. , and Losos J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In ‘Ecological Morphology: Integrative Organismal Biology’. (Eds P. C. Wainwright and S. M. Reilly.) pp. 240–302. (University of Chicago Press: Chicago, IL.)

Harmon, L. J. , Kolbe, J. J. , Cheverud, J. M. , and Losos, J. B. (2005). Convergence and the multidimensional niche. Evolution 59, 409–421.
PubMed | Hildebrand M. (1985). Digging of quadrupeds. In ‘Functional Vertebrate Morphology’. (Eds M. Hildebrand, D. M. Bramble, K. F. Liem and D. B. Wake.) pp. 89–109. (Harvard University Press: Cambridge, MA.)

Horn G.-H. (2004). Varanus gilleni. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 355–365. (Indiana University Press: Bloomington, IN.)

Horn G.-H. , and King D. R. (2004). Varanus giganteus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 335–354. (Indiana University Press: Bloomington, IN.)

Husband G. , and Christian K. (2004). Varanus primordius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 434–437. (Indiana University Press: Bloomington, IN.)

Irschick, D. J. , and Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367–396.
Crossref | GoogleScholarGoogle Scholar | Irwin S. (2004). Varanus keithhornei. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 401–405. (Indiana University Press: Bloomington, IN.)

Jusufi, A. , Goldman, D. I. , and Revzen, S. (2008). Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences of the United States of America 105, 4215–4219.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | King D. R. (2004 a). Varanus pilbarensis. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 430–433. (Indiana University Press: Bloomington, IN.)

King D. , and Green B. (1999). ‘Varanid: The Biology of Varanid Lizards.’ (UNSW Press: Sydney.)

King D. R. , and King R. A. (2004). Varanus rosenbergi. In ‘Varanoid lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 438–450. (Indiana University Press: Bloomington, IN.)

King M. (2004 b). Varanus kingorum. In ‘Varanoid lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 406–409. (Indiana University Press: Bloomington, IN.)

Kohlsdorf, T. , Garland, T. , and Navas, C. A. (2001). Limb and tail lengths in relation to substrate usage in Tropidurus lizards. Journal of Morphology 248, 151–164.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Lemm J. M. , and Bedford G. (2004). Varanus spenceri. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 466–471. (Indiana University Press: Bloomington, IN.)

Losos, J. B. (1990a). Ecomorphology, performance capability and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs 60, 369–388.
Crossref | GoogleScholarGoogle Scholar | Mayes P. J. (2007). The ecology and behaviour of Varanus mertensi (Reptilia: Varanidae). Ph.D. Thesis, Edith Cowan University, Perth.

Melville, J. , and Swain, R. (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biological Journal of the Linnean Society 70, 667–683.
Miles D. B. (1994). Covariation between morphology and locomotory performance in sceloporine lizards. In ‘Lizard Ecology: Historical and Experimental Perspectives’. (Eds L. J. Vitt and E. R. Pianka.) pp. 207–235. (Princeton University Press: Princeton, NJ.)

Mosimann, J. E. (1970). Size allometry: size and shape variables with characterizations of the lognormal and generalised gamma distributions. Journal of the American Statistical Association 65, 930–945.
Crossref | GoogleScholarGoogle Scholar | Pianka E. R. (2004 a). Varanus brevicauda. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 312–317. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 b). Varanus eremius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 328–334. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 c). Varanus semiremex. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 462–465. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 d). Varanus tristis. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 477–487. (Indiana University Press: Bloomington, IN.)

Posada, D. , and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Schultz T. , and Doody S. (2004). Varanus mitchelli. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 416–422. (Indiana University Press: Bloomington, IN.)

Smith L. A. , Sweet S. S. , and King D. R. (2004). Varanus scalaris. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 451–461. (Indiana University Press: Bloomington, IN.)

Somers, K. M. (1986). Multivariate allometry and removal of size with principal components analysis. Systematic Zoology 35, 359–368.
Crossref | GoogleScholarGoogle Scholar | Sweet S. S. (2004 a). Varanus glauerti. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 366–372. (Indiana University Press: Bloomington, IN.)

Sweet S. S. (2004 b). Varanus glebopalma. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 373–379. (Indiana University Press: Bloomington, IN.)

Swofford D. L. (2000). ‘PAUP*: Phylogenetic Analysis using Parsimony (* And Other Methods).’ Version 4.0. (Sinauer: Sunderland, MA.)

Thompson, G. G. (1994). Activity area during the breeding season of Varanus gouldii (Reptilia: Varanidae) in an urban environment. Wildlife Research 21, 633–641.
Crossref | GoogleScholarGoogle Scholar | Thompson G. G. (2004 a). Varanus caudolineatus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 318–327. (Indiana University Press: Bloomington, IN.)

Thompson G. G. (2004 b). Varanus gouldii. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 380–400. (Indiana University Press: Bloomington, IN.)

Thompson, G. G. , and Withers, P. C. (1997). Comparative morphology of Western Australian varanid lizards (Squamata: Varanidae). Journal of Morphology 233, 127–152.
Crossref | GoogleScholarGoogle Scholar | Weavers B. (2004). Varanus varius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 488–502. (Indiana University Press: Bloomington, IN.)

Wilson S. K. , and Knowles D. G. (1995). ‘Australia’s Reptiles: A Photographic Reference to the Terrestrial Reptiles of Australia.’ (Cornstalk: Sydney.)





Appendix 1.  List of taxa sequenced, source and voucher number for tissue or specimen, GenBank accession number and location
WC = wild-caught, AM = Australian Museum, QM = Queensland Museum
Click to zoom