Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Line-transect versus point-transect sampling: the effects of survey area and survey effort on method efficiency for Geoffroy’s spider monkeys

Anja Hutschenreiter https://orcid.org/0000-0001-8168-4819 A B F , Gabriel Ramos-Fernández B C D and Filippo Aureli A B E
+ Author Affiliations
- Author Affiliations

A Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Castelazo Ayala S/N, Col. Industrial Animas, 91190 Xalapa, Veracruz, Mexico.

B ConMonoMaya A.C., Km 5.4 Carretera Chemax-Coba, 97770 Chemax, Yucatan, Mexico.

C Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de Mexico, Circuto Escolar 3000, C.U., Coyoacán, 04510 Mexico City, Mexico.

D Unidad Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2580, La Laguna Ticoman, Gustavo A. Madero, 07340 Mexico City, Mexico.

E Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom.

F Corresponding author. Email: a.hutschenreiter@gmx.net

Wildlife Research 48(7) 590-597 https://doi.org/10.1071/WR20188
Submitted: 5 November 2020  Accepted: 11 March 2021   Published: 14 May 2021

Abstract

Context: Line-transect sampling is considered to be a more efficient survey method than point-transect sampling to estimate population densities and abundance of many animal species.

Aims: In the present study, we tested whether this claim holds true when surveying arboreal fast-moving primate species occurring at low densities, and whether the potential difference in efficiency can be explained by the difference in the size of the survey area between the methods. We further examined the impact of survey effort for point-transect sampling.

Methods: We conducted line- and point-transect sampling for Geoffroy’s spider monkeys (Ateles geoffroyi) in the same locations and compared the numbers of detected individual monkeys and the probability of their occurrence per survey between the two methods. We further compared the data from point-transect sampling gathered within three different waiting periods.

Key results: We found a higher probability to detect monkeys and a higher number of monkeys during line-transect sampling than during point-transect sampling, but more spider monkeys were detected at point transects when controlling for the size of the survey area. More monkey detections were made during the first 10 min than during the second and third 10-min periods of point-transect surveys.

Conclusions: We showed that line-transect sampling is more efficient than point-transect sampling when surveying Geoffroy’s spider monkeys in a flat landscape of tropical forest with homogenous visibility. We discuss factors influencing survey results and recommend 20 min as the maximum waiting time at point transects when surveying arboreal mammals.

Implications: Our study has provided a quantitative approach to compare efficiency across survey methods for fast-moving arboreal animals that occur at low densities, and supports the use of point-transect sampling in sites where line-transect sampling is not feasible, such as in human-modified landscapes.

Keywords: population sampling, method comparison, survey effort, Ateles geoffroyi.


References

Aquino, R., Cornejo, F. M., Pezo, E., and Heymann, E. W. (2013). Distribution and abundance of white-fronted spider monkeys, Ateles belzebuth (Atelidae), and threats to their survival in Peruvian Amazonia. Folia Primatologica 84, 1–10.
Distribution and abundance of white-fronted spider monkeys, Ateles belzebuth (Atelidae), and threats to their survival in Peruvian Amazonia.Crossref | GoogleScholarGoogle Scholar |

Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., Chapman, C. A., Connor, R., Fiore, A. D., Dunbar, R. I., Henzi, S. P., and Holekamp, K. (2008). Fission–fusion dynamics: new research frameworks. Current Anthropology 49, 627–654.
Fission–fusion dynamics: new research frameworks.Crossref | GoogleScholarGoogle Scholar |

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Brugiere, D., and Fleury, M. C. (2000). Estimating primate densities using home range and line transect methods: a comparative test with the black colobus monkey Colobus satanas. Primates 41, 373–382.
Estimating primate densities using home range and line transect methods: a comparative test with the black colobus monkey Colobus satanas.Crossref | GoogleScholarGoogle Scholar | 30545201PubMed |

Buckland, S. T., Plumptre, A. J., Thomas, L., and Rexstad, E. A. (2010). Line transect sampling of primates: can animal-to-observer distance methods work? International Journal of Primatology 31, 485–499.
Line transect sampling of primates: can animal-to-observer distance methods work?Crossref | GoogleScholarGoogle Scholar |

Buckland, S. T., Rexstad, E. A., Marques, T. A., and Oedekoven, C. S. (Eds.) (2015). ‘Distance Sampling: Methods and Applications.’ (Springer International Publishing: New York, NY, USA.)

Campbell, G., Head, J., Junker, J., and Nekaris, K. A. I. (2016). Primate abundance and distribution: background concepts and methods. In ‘An Introduction to Primate Conservation’. (Eds S. A. Wich, and A. J. Marshall.) pp. 79–110. (Oxford University Press: Oxford.)

Chapman, C. A. (1990). Association patterns of spider monkeys: the influence of ecology and sex on social organization. Behavioral Ecology and Sociobiology 26, 409–414.
Association patterns of spider monkeys: the influence of ecology and sex on social organization.Crossref | GoogleScholarGoogle Scholar |

Chapman, C. A., Fedigan, L. M., and Fedigan, L. (1988). A comparison of transect methods of estimating population density of Costa Rican primates. Brenesia 30, 67–80.

Chapman, C. A., Chapman, L., and Glander, K. E. (1989). Primate populations in northwestern Costa Rica: potential for recovery. Primate Conservation 10, 37–44.

Chapman, C. A., Bortolamiol, S., Matsuda, I., Omeja, P. A., Paim, F. P., Reyna-Hurtado, R., Sengupta, R., and Valenta, K. (2018). Primate population dynamics: variation in abundance over space and time. Biodiversity and Conservation 27, 1221–1238.
Primate population dynamics: variation in abundance over space and time.Crossref | GoogleScholarGoogle Scholar |

Chaves, Ó. M., Stoner, K. E., and Arroyo-Rodríguez, V. (2011). Seasonal differences in activity patterns of Geoffroy’s spider monkeys (Ateles geoffroyi) living in continuous and fragmented forests in southern Mexico. International Journal of Primatology 32, 960–973.
Seasonal differences in activity patterns of Geoffroy’s spider monkeys (Ateles geoffroyi) living in continuous and fragmented forests in southern Mexico.Crossref | GoogleScholarGoogle Scholar |

Crist, E., Mora, C., and Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science 356, 260–264.
The interaction of human population, food production, and biodiversity protection.Crossref | GoogleScholarGoogle Scholar | 28428391PubMed |

Dawson, D. G. (1981). Counting birds for a relative measure (index) of density. Studies in Avian Biology 6, 12–16.

Dénes, F. V., Silveira, L. F., and Beissinger, S. R. (2015). Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution 6, 543–556.
Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation.Crossref | GoogleScholarGoogle Scholar |

Dobkin, D. S., and Rich, A. C. (1998). Comparison of line-transect, spot-map, and point-count surveys for birds in Riparian habitats of the Great Basin. Journal of Field Ornithology 69, 430–443.

Estrada, A., Luecke, L., Van Belle, S., Barrueta, E., and Meda, M. R. (2004). Survey of black howler (Alouatta pigra) and spider (Ateles geoffroyi) monkeys in the Mayan sites of Calakmul and Yaxchilán, Mexico and Tikal, Guatemala. Primates 45, 33–39.
Survey of black howler (Alouatta pigra) and spider (Ateles geoffroyi) monkeys in the Mayan sites of Calakmul and Yaxchilán, Mexico and Tikal, Guatemala.Crossref | GoogleScholarGoogle Scholar | 14586803PubMed |

Fedigan, L. M., Fedigan, L., Chapman, C., and Glander, K. E. (1988). Spider monkey home ranges: a comparison of radio telemetry and direct observation. American Journal of Primatology 16, 19–29.
Spider monkey home ranges: a comparison of radio telemetry and direct observation.Crossref | GoogleScholarGoogle Scholar | 31968876PubMed |

Fragoso, J. M., Gonçalves, F., Oliveira, L. F., Overman, H., Levi, T., and Silvius, K. M. (2019). Visual encounters on line transect surveys under-detect carnivore species: implications for assessing distribution and conservation status. PLoS One 14, e0223922.
Visual encounters on line transect surveys under-detect carnivore species: implications for assessing distribution and conservation status.Crossref | GoogleScholarGoogle Scholar | 31665170PubMed |

Gilhooly, L. J., Rayadin, Y., and Cheyne, S. M. (2015). A comparison of hylobatid survey methods using triangulation on Müller’s gibbon (Hylobates muelleri) in Sungai Wain Protection Forest, East Kalimantan, Indonesia. International Journal of Primatology 36, 567–582.
A comparison of hylobatid survey methods using triangulation on Müller’s gibbon (Hylobates muelleri) in Sungai Wain Protection Forest, East Kalimantan, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Gonzalez-Kirchner, J. P. (1999). Habitat use, population density and subgrouping pattern of the Yucatan spider monkey (Ateles geoffroyi yucatanensis) in Quintana Roo, Mexico. Folia Primatologica 70, 55–60.
Habitat use, population density and subgrouping pattern of the Yucatan spider monkey (Ateles geoffroyi yucatanensis) in Quintana Roo, Mexico.Crossref | GoogleScholarGoogle Scholar |

Green, K. M. (1978). Primate censusing in northern Colombia: a comparison of two techniques. Primates 19, 537–550.
Primate censusing in northern Colombia: a comparison of two techniques.Crossref | GoogleScholarGoogle Scholar |

Hanya, G., Yoshihiro, S., Zamma, K., Kubo, R., and Takahata, Y. (2003). New methods to census primate groups: estimating group density of Japanese macaques by point census. American Journal of Primatology 60, 43–56.
New methods to census primate groups: estimating group density of Japanese macaques by point census.Crossref | GoogleScholarGoogle Scholar | 12784285PubMed |

Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616.
Using observation-level random effects to model overdispersion in count data in ecology and evolution.Crossref | GoogleScholarGoogle Scholar | 25320683PubMed |

Hutchinson, M. K., and Holtman, M. C. (2005). Analysis of count data using Poisson regression. Research in Nursing & Health 28, 408–418.
Analysis of count data using Poisson regression.Crossref | GoogleScholarGoogle Scholar |

Joseph, L. N., Elkin, C., Martin, T. G., and Possingham, H. P. (2009). Modeling abundance using N‐mixture models: the importance of considering ecological mechanisms. Ecological Applications 19, 631–642.
Modeling abundance using N‐mixture models: the importance of considering ecological mechanisms.Crossref | GoogleScholarGoogle Scholar | 19425427PubMed |

Kalan, A. K., Mundry, R., Wagner, O. J., Heinicke, S., Boesch, C., and Kühl, H. S. (2015). Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecological Indicators 54, 217–226.
Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring.Crossref | GoogleScholarGoogle Scholar |

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82, 1–26.
lmerTest package: tests in linear mixed effects models.Crossref | GoogleScholarGoogle Scholar |

Lindsey, J. K. (Ed.) (2000). ‘Applying generalized linear models.’ (Springer Science and Business Media: Berlin, Germany.)

Marshall, A. R., Lovett, J. C., and White, P. C. L. (2008). Selection of line-transect methods for estimating the density of group-living animals: lessons from the primates. American Journal of Primatology 70, 452–462.
Selection of line-transect methods for estimating the density of group-living animals: lessons from the primates.Crossref | GoogleScholarGoogle Scholar | 18240143PubMed |

McLean, K. A., Trainor, A. M., Asner, G. P., Crofoot, M. C., Hopkins, M. E., Campbell, C. J., Martin, R. E., Knapp, D. E., and Jansen, P. A. (2016). Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landscape Ecology 31, 1849–1862.
Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure.Crossref | GoogleScholarGoogle Scholar |

Nekaris, K. A. I., Pambudi, J. A. A., Susanto, D., Ahmad, R. D., and Nijman, V. (2014). Densities, distribution and detectability of a small nocturnal primate (Javan slow loris Nycticebus javanicus) in a montane rainforest. Endangered Species Research 24, 95–103.
Densities, distribution and detectability of a small nocturnal primate (Javan slow loris Nycticebus javanicus) in a montane rainforest.Crossref | GoogleScholarGoogle Scholar |

Nijman, V., and Menken, S. B. (2005). Assessment of census techniques for estimating density and biomass of gibbons (Primates: Hylobatidae). The Raffles Bulletin of Zoology 53, 201–211.

Norvell, R. E., Howe, F. P., and Parrish, J. R. (2003). A seven-year comparison of relative-abundance and distance-sampling methods. The Auk 120, 1013–1028.
A seven-year comparison of relative-abundance and distance-sampling methods.Crossref | GoogleScholarGoogle Scholar |

Pinacho-Guendulain, B., and Ramos-Fernández, G. (2017). Influence of fruit availability on the fission-fusion dynamics of spider monkeys (Ateles geoffroyi). International Journal of Primatology 38, 466–484.
Influence of fruit availability on the fission-fusion dynamics of spider monkeys (Ateles geoffroyi).Crossref | GoogleScholarGoogle Scholar |

Plumptre, A. J., Sterling, E. J., and Buckland, S. T. (2013). Primate census and survey techniques. In ‘Primate Ecology and Conservation’. (Eds E. Sterling, N. Bynum, and M. Blair.) pp. 10–26. (Oxford University Press: Oxford.)10.1093/acprof:oso/9780199659449.003.0002

Pruetz, J. D., and Leasor, H. C. (2002). Survey of three primate species in forest fragments at La Suerte Biological Field Station, Costa Rica. Neotropical Primates 10, 4–8.

R Core Team (2019). ‘R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Ramos-Fernandez, G., and Ayala-Orozco, B. (2002). Population size and habitat use of spider monkeys at Punta Laguna, Mexico. In ‘Primates in Fragments: Ecology and Conservation’. (Ed. L. K. Marsh.) pp. 191–209. (Plenum-Kluwer: New York, NY, USA.)10.1007/978-1-4757-3770-7_13

Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., and Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. PLoS One 8, e62813.
Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar | 23675427PubMed |

Ricklefs, R. E. (Ed.) (1990). ‘Ecology.’ 3rd edn. (W. H. Freeman and Company: New York, NY, USA.)

Rodrigues, R. C., and Prado, P. I. (2018). Sampling methods affect observed response of bird species richness to vegetation structure in Brazilian savannas. The Condor: Ornithological Applications 120, 402–413.
Sampling methods affect observed response of bird species richness to vegetation structure in Brazilian savannas.Crossref | GoogleScholarGoogle Scholar |

Rosenstock, S. S., Anderson, D. R., Giesen, K. M., Leukering, T., and Carter, M. F. (2002). Landbird counting techniques: current practices and an alternative. The Auk 119, 46–53.
Landbird counting techniques: current practices and an alternative.Crossref | GoogleScholarGoogle Scholar |

Rovero, F., and Struhsaker, T. T. (2007). Vegetative predictors of primate abundance: utility and limitations of a fine-scale analysis. American Journal of Primatology 69, 1242–1256.
Vegetative predictors of primate abundance: utility and limitations of a fine-scale analysis.Crossref | GoogleScholarGoogle Scholar | 17358022PubMed |

Spaan, D. (2017). The Effects of Habitat Disturbance on the Populations of Geoffroy’s Spider Monkeys in the Yucatan Peninsula. Doctoral Thesis, Universidad Veracruzana, Xalapa, Mexico.

Spaan, D., Ramos-Fernandez, G., Schaffner, C., Pinacho-Guendulain, B., and Aureli, F. (2017). How survey design affects monkey counts: a case study on individually recognized spider monkeys (Ateles geoffroyi). Folia Primatologica 88, 409–420.
How survey design affects monkey counts: a case study on individually recognized spider monkeys (Ateles geoffroyi).Crossref | GoogleScholarGoogle Scholar |

Spaan, D., Ramos-Fernández, G., Bonilla-Moheno, M., Schaffner, C. M., Morales-Mávil, J. E., Slater, K., and Aureli, F. (2020). Anthropogenic habitat disturbance and food availability affect the abundance of an endangered primate: a regional approach. Mammalian Biology 100, 325–333.
Anthropogenic habitat disturbance and food availability affect the abundance of an endangered primate: a regional approach.Crossref | GoogleScholarGoogle Scholar |

Sutherland, W. J. (Ed) (2006). ‘Ecological census techniques: a handbook.’ 2nd edn. (Cambridge University Press: Cambridge.)

Taulman, J. F. (2013). A comparison of fixed-width transects and fixed-radius point counts for breeding-bird surveys in a mixed hardwood forest. Southeastern Naturalist 12, 457–477.
A comparison of fixed-width transects and fixed-radius point counts for breeding-bird surveys in a mixed hardwood forest.Crossref | GoogleScholarGoogle Scholar |

Thomas, L., Buckland, S. T., Burnham, K. P., Anderson, D. R., Laake, J. L., Borchers, D. L., and Strindberg, S. (2014). Distance sampling. Encyclopedia of Environmetrics 1, 544–552.
Distance sampling.Crossref | GoogleScholarGoogle Scholar |

Urquiza‐Haas, T., Peres, C. A., and Dolman, P. M. (2011). Large vertebrate responses to forest cover and hunting pressure in communal landholdings and protected areas of the Yucatan Peninsula, Mexico. Animal Conservation 14, 271–282.
Large vertebrate responses to forest cover and hunting pressure in communal landholdings and protected areas of the Yucatan Peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar |

Verner, J., and Ritter, L. V. (1985). A comparison of transects and point counts in oak-pine woodlands of California. The Condor 87, 47–68.
A comparison of transects and point counts in oak-pine woodlands of California.Crossref | GoogleScholarGoogle Scholar |

Vidal-García, F., and Serio-Silva, J. C. (2011). Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates 52, 261–270.
Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm.Crossref | GoogleScholarGoogle Scholar | 21404094PubMed |

Wallace, R. B. (2008). Factors influencing spider monkey habitat use and ranging patterns. In ‘Spider Monkeys: Behavior, Ecology and Evolution of the Genus Ateles’. (Ed. C. J. Campbell.) pp. 138–154. (Cambridge University Press: Cambridge.)10.1017/CBO9780511721915.005

Weghorst, J. A. (2007). High population density of black-handed spider monkeys (Ateles geoffroyi) in Costa Rican lowland wet forest. Primates 48, 108–116.
High population density of black-handed spider monkeys (Ateles geoffroyi) in Costa Rican lowland wet forest.Crossref | GoogleScholarGoogle Scholar | 17265010PubMed |

Wilson, R. R., Twedt, D. J., and Elliott, A. B. (2000). Comparison of line transects and point counts for monitoring spring migration in forested wetlands. Journal of Field Ornithology 71, 345–355.
Comparison of line transects and point counts for monitoring spring migration in forested wetlands.Crossref | GoogleScholarGoogle Scholar |