Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

Forest fires in Mexico: an approach to estimate fire probabilities

Luis Galván A C and Víctor Magaña B
+ Author Affiliations
- Author Affiliations

A Posgrado en Geografía, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

B Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

C Corresponding author. Email: cohuatl09@gmail.com

International Journal of Wildland Fire 29(9) 753-763 https://doi.org/10.1071/WF19057
Submitted: 11 April 2019  Accepted: 2 May 2020   Published: 3 June 2020

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

The probabilities of forest fires in Mexico are estimated using information on precipitation and temperature, along with data on type of vegetation, human activities near forests and fire prevention policies. The proposed model addresses the factors that account for extreme wildfire hazard, and may provide a basis for fire prevention actions, reducing vulnerability factors.

Additional keywords: climate, drought, natural hazard, vulnerability.


References

Anderson LO, Marchezini V, Morello TF, Cunningham C (2019) Modelo conceitual de sistema de alerta e de gestão de riscos associados a incêndios florestais e desafios para políticas públicas no Brasil. Territorium 26, 45–63.
Modelo conceitual de sistema de alerta e de gestão de riscos associados a incêndios florestais e desafios para políticas públicas no Brasil.Crossref | GoogleScholarGoogle Scholar |

Avila-Flores FD, Pompa GM, Antonio NS, Rodríguez TD, Vargas PE, Santillán PJ (2010) Driving factors for forest fire occurrence in Durango state of Mexico: a geospatial perspective. Chinese Geographical Science 20, 491–497.
Driving factors for forest fire occurrence in Durango state of Mexico: a geospatial perspective.Crossref | GoogleScholarGoogle Scholar |

Barsimantov J, Antezana NJ (2012) Forest cover change and land tenure change in Mexico’s avocado region: is community forestry related to reduced deforestation for high value crops? Applied Geography 32, 844–853.
Forest cover change and land tenure change in Mexico’s avocado region: is community forestry related to reduced deforestation for high value crops?Crossref | GoogleScholarGoogle Scholar |

Bravo‐Espinosa M, Mendoza ME, Carlón-Allende T, Medina L, Sáenz‐Reyes JT, Páez R (2014) Effects of converting forest to avocado orchards on topsoil properties in the Trans‐Mexican volcanic system, Mexico. Land Degradation & Development 25, 452–467.
Effects of converting forest to avocado orchards on topsoil properties in the Trans‐Mexican volcanic system, Mexico.Crossref | GoogleScholarGoogle Scholar |

Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology 3, 249–266.
Global land precipitation: a 50-yr monthly analysis based on gauge observations.Crossref | GoogleScholarGoogle Scholar |

Cheng D, Rogan J, Schneider L, Cochrane M (2013) Evaluating MODIS active fire products in subtropical Yucatán forest. Remote Sensing Letters 4, 455–464.
Evaluating MODIS active fire products in subtropical Yucatán forest.Crossref | GoogleScholarGoogle Scholar |

Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2013) Áreas Naturales Protegidas Federales de México. Available at http://sig.conanp.gob.mx/website/interactivo/anps/ [Verified 16 May 2020]

Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2014) Programa Nacional de Áreas Naturales Protegidas 2014–2018. Plan Nacional de Desarrollo 2013–2018. Gobierno de la República. México. Available at https://www.conanp.gob.mx/documentos/PNANP20142018.pdf [Verified 16 May 2020]

Comisión Nacional Forestal (CONAFOR) (2001) Programa estratégico forestal para México 2025. Publicación Especial de la Comisión Nacional Forestal. (Zapopan, Jalisco, México).

Comisión Nacional Forestal (CONAFOR) (2009) ‘Programa Nacional de Protección contra Incendios Forestales. Resultados 2008. Primera edición.’ (Zapopan, Jalisco, México).

Comisión Nacional Forestal (CONAFOR) (2010) Incendios forestales. Guía práctica para comunicadores. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (Zapopan, Jalisco, México).

Comisión Nacional Forestal (CONAFOR) (2012) Zonificación forestal. Available at https://snigf.cnf.gob.mx/zonificacion-forestal/ [Verified 16 May 2020]

Comisión Nacional Forestal (CONAFOR) (2016) Reporte semanal de resultados de incendios forestales 2016. Programa Nacional de Prevención de Incendios Forestales/Centro Nacional de Control de Incendios Forestales-CONAFOR. (Zapopan, Jalisco, México).

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (1998) Los incendios en México: un diagnóstico de su efecto en la diversidad biológica. Informe entregado a la SEMARNAT. Available at http://conabio.gob.mx/mapaservidor/incendios/modis/tablas2007/tablas2007/vegetacion.html [Verified 16 May 2020]

Costafreda-Aumedes AS, Comas C, Vega GC (2017) Human-caused fire occurrence modelling in perspective: a review. International Journal of Wildland Fire 26, 983–998.
Human-caused fire occurrence modelling in perspective: a review.Crossref | GoogleScholarGoogle Scholar |

Fernandes K, Baethgen W, Bernardes S, DeFries R, DeWitt DG, Goddard L, Lavado W, Dong EL, Padoch C, Pinedo VM, Uriarte M (2011) North tropical Atlantic influence on western Amazon fire season variability. Geophysical Research Letters 38, L12701
North tropical Atlantic influence on western Amazon fire season variability.Crossref | GoogleScholarGoogle Scholar |

Finney M (2005) The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management 211, 97–108.
The challenge of quantitative risk analysis for wildland fire.Crossref | GoogleScholarGoogle Scholar |

Food and Agriculture Organization of the United Nations (FAO) (2007) ‘Situación de los bosques del Mundo.’ (FAO: Rome, Italy).

Food and Agriculture Organization of the United Nations (FAO) (2014) ‘El estado de los bosques del mundo. Potenciar los beneficios socioeconómicos de los bosques.’ (FAO: Rome, Italy).

Galván OL (2011) Impacto de la sequía meteorológica en la vegetación en distintas regiones climáticas de México (1982–2006). Masters thesis, Universidad Nacional Autónoma de México (UNAM), Mexico City. Available at 132.248.9.195/ptb2011/octubre/0674287/Index.html [Verified 16 May 2020]

Gómez PA, Kaus A, Jimenez OJ, Bainbridge D, Rorive VM (1993) Mexico. In ‘Sustainable agriculture and the environment in the humid tropics’. (Eds BJ Rice, JL Overton) pp. 483–548. (The National Academies Press: Washington, DC)

Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83, 195–213.
Overview of the radiometric and biophysical performance of the MODIS vegetation indices.Crossref | GoogleScholarGoogle Scholar |

IPCC (2012) ‘Managing the risks of extreme events and disasters to advance climate change adaptation.’ A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. (Eds CB Field, V Barros, TF Stocker, D Qin, DJ Dokken, KL Ebi, MD Mastrandrea, KJ Mach, GK Plattner, SK Allen, M Tignor, PM Midgley). (Cambridge University Press: Cambridge, UK).

Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DM (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications 6, 7537
Climate-induced variations in global wildfire danger from 1979 to 2013.Crossref | GoogleScholarGoogle Scholar | 26172867PubMed |

Kirtman BP, Dughong M, Johnna MI (2014) The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bulletin of the American Meteorological Society 95, 585–601.
The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction.Crossref | GoogleScholarGoogle Scholar |

Krieger DJ (2001) The economic value of forest ecosystem services: a review. The Wilderness Society, Washington DC. Available at https://www.sierraforestlegacy.org/Resources/Conservation/FireForestEcology/ForestEconomics/EcosystemServices.pdf [Verified 18 May 2020]

Magaña RV (Ed.) (1999) ‘Los impactos de El Niño en México.’ (Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Secretaría de Gobernación: México City). Available at http://centro.paot.org.mx/index.php/porinstituciones/otros-organismos/73-varios/745-los-impactos-de-el-nino-en-mexico [Verified 18 May 2020]

Magaña RV, Neri C (2012) El reto de la sequía en México. Revista Mexicana de Sociologia 1, 12–14.

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In ‘Eighth conference on applied climatology’, 17–22 January 1993, Anaheim, CA. (American Meteorological Society: Boston, MA, USA).

McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In ‘Proceedings of the ninth conference on applied climatology’, 15–20 January 1995, Dallas, TX. (American Meteorological Society: Boston, MA, USA).

NASA Fire Information for Resource Management (FIRMS) Active fire data: MODIS Collection 6 NRT – MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14DL. Available at https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms [Verified 18 May 2020]

Neri C, Magaña RV (2016) Estimation of vulnerability and risk to meteorological drought in Mexico. Weather, Climate, and Society 8, 95–110.
Estimation of vulnerability and risk to meteorological drought in Mexico.Crossref | GoogleScholarGoogle Scholar |

NOAA-GFDL (2014) GFDL-CM2p1 model output prepared for CMIP5, served by ESGF. World Data Center for Climate (WDCC) at Deutsches Klimarechenzentrum (DKRZ), Hamburg Germany. Available at https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=NGG2 [Verified 18 May 2020]

Nobre CA, De Simone BL (2009) ‘Tipping points’ for the Amazon forest. Current Opinion in Environmental Sustainability 1, 28–36.
‘Tipping points’ for the Amazon forest.Crossref | GoogleScholarGoogle Scholar |

North American Regional Reanalysis (NARR) (2004) A long-term, consistent, high-resolution climate dataset for the North American domain, as a major improvement upon the earlier global reanalysis datasets in both resolution and accuracy. Fedor Mesingeret al. [BAMS.]. Available at https://psl.noaa.gov/data/gridded/data.narr.html [Verified 20 May 2020]

Pérez VG, Márquez LM, Cortés OA, Salmerón MM (2013) Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México. Madera y Bosques 19, 37–58.
Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México.Crossref | GoogleScholarGoogle Scholar |

Pompa-Garcia GM, Camarero JJ, Rodríguez-Trejo DA, Vega-Nieva DJ (2018) Drought and spatiotemporal variability of forest fires across Mexico. Chinese Geographical Science 28, 25–37.
Drought and spatiotemporal variability of forest fires across Mexico.Crossref | GoogleScholarGoogle Scholar |

Pyrke AF, Marsden SJB (2005) Fire-attributes categories, fire sensitivity, and flammability of Tasmanian vegetation communities. Tasforests 16, 35–46.

Ressl R, Cruz I (2012) Detección y monitoreo de incendios forestales mediante imágenes de satélite. Biodiversitas 100, 12–13.

Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire 12, 23–37.
Fire ecology of Mexican pines and a fire management proposal.Crossref | GoogleScholarGoogle Scholar |

Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In ‘Proceedings, third earth resources technology satellite-1 symposium’, 10–14 December 1973, Washington DC. (Eds CF Stanley, PM Enrico, AB Margaret) pp. 309–317. (Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington DC). Available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf [Verified 18 May 2020].

Vose JM, Clark JS, Luce CH, Patel-Weynand T (Eds) (2016) Effects of drought on forests and rangelands in the United States: a comprehensive science synthesis. USDA Forest Service, General Technical Report WO-93b. (Washington, DC, USA) 10.2737/WO-GTR-93B

Wildlife Conservation Society Center for International Earth Science Information Network (WCS-CIESIN) (2005) Last of the wild Project, version 2, 2005 (LWP-2): Global Human Influence Index (HII) dataset (geographic). Available at http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic [Verified 18 May 2020]

World Bank (2017) World development indicators. (Washington, DC, USA). Available at http://data.worldbank.org/data-catalog/world-development-indicators [Verified 18 May 2020]

Zúñiga-Vásquez VJM, Cisneros GD, Pompa GM, Rodríguez TDA, Pérez VG (2017a) Spatial modeling of forest fires in Mexico: an integration of two data sources. Bosque 38, 563–574.
Spatial modeling of forest fires in Mexico: an integration of two data sources.Crossref | GoogleScholarGoogle Scholar |

Zúñiga-Vásquez VJM, Cisneros GD, Pompa GM (2017b) Drought regulates the burned forest areas in Mexico: the case of 2011, a record year. Geocarto International 34, 1–14.
Drought regulates the burned forest areas in Mexico: the case of 2011, a record year.Crossref | GoogleScholarGoogle Scholar |