Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Fire-caused tree mortality in thinned Douglas-fir stands in Patagonia, Argentina

Maria M. Godoy A C , Guillermo E. Defossé A C D , Lucas O. Bianchi A C , Miguel M. Davel A and Tomás E. Withington B
+ Author Affiliations
- Author Affiliations

A Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP–CONICET) and Universidad Nacional de la Patagonia San Juan Bosco, Sede Esquel, C.C. 14 – (9200) Esquel, Chubut, Argentina.

B Servicio Provincial de Manejo del Fuego – Dirección General de Bosques y Parques del Chubut. 25 de Mayo y Sáenz Peña (9200) Esquel, Chubut, Argentina.

C Fire Paradox Project at CIEFAP, C.C. 14 – (9200) Esquel, Chubut, Argentina.

D Corresponding author. Email address: gdefosse@ciefap.org.ar

International Journal of Wildland Fire 22(6) 810-814 https://doi.org/10.1071/WF12107
Submitted: 21 December 2012  Accepted: 8 January 2013   Published: 2 May 2013

Abstract

In 2003 in a municipal park near Esquel, Patagonia, Argentina, plots within a 21-year-old Douglas-fir (Pseudotsuga menziesii) afforested area were subjected to three silvicultural treatments (thinning to Reineke’s Stand Density Index (SDI) of 900, 700, 500). In March 2007 all plots were burned by a wildfire that presented extreme fire behaviour. Three weeks after the wildfire we assessed mortality, height of scorch and percentage of crown scorch, and during three subsequent growing seasons we measured mortality and growth parameters. At the end of the study, mortality differed significantly among treatments and an untreated control, and ranged from 100% in the untreated control to 25, 10 and 5% in the SDI 900, 700 and 500 treatments. The highest growth parameters and lower mortality rates were achieved at SDI indices of 700 or 500 (i.e. in the least dense plots). Trees thinned to these densities not only appear to withstand extreme fires, at least under the conditions presented, but also to achieve the highest growth rates.

Additional keywords: extreme fire behaviour, fuel management, Reineke’s index, silvicultural treatments.


References

Agee JK, Skinner CN (2005) Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211, 83–96.
Basic principles of forest fuel reduction treatments.Crossref | GoogleScholarGoogle Scholar |

Alexander ME (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60, 349–357.
Calculating and interpreting forest fire intensities.Crossref | GoogleScholarGoogle Scholar |

Alexander ME, Cruz MG (2012) Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. International Journal of Wildland Fire 21, 95–113.
Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height.Crossref | GoogleScholarGoogle Scholar |

Beck J, Parminter J, Alexander M, MacDermid E, Van Nest T, Beaver A, Grimaldi S (2005) Fire ecology and management. In ‘Forestry Handbook for British Columbia’, 5th edn, (Eds SB Watts, L Tolland) pp. 485–521. (Forest Undergraduate Society, Faculty of Forestry, University of British Columbia: Vancouver, BC)

Bell JF, Marshall DD, Johnson GP (1981) Tariff tables for mountain hemlock developed from an equation of total stem cubic foot volume. Oregon State University, School of Forestry, Forest Research Laboratory, Research Bulletin 35. (Corvallis, OR)

Bertiller MB, Beeskow AM, Coronato FR (1991) Seasonal environmental variation and plant phenology in arid Patagonia (Argentina). Journal of Arid Environments 21, 1–11.

Brown AA, Davis KP (1973) ‘Forest Fire: Control and Use’, 2nd edn. (McGraw-Hill: New York)

Byram GH (1959) Combustion of forest fuels. In ‘Forest Fire. Control and Use’. (Ed. KP Davis) pp. 61–89. (McGraw-Hill: New York)

Cahill JM, Snellgrove TA, Fahey TD (1986) The case for pruning young-growth stands of Douglas-fir. In ‘Douglas-fir: Stand Management for the Future’. (Eds CD Oliver, DP Hanley, JA Johnson) pp. 123–132. (College of Forest Resources, University of Washington: Seattle, WA)

Daniel PW, Helmus UE, Baker FS (1982) ‘Principios de Silvicultura’, 2nd edn. (McGraw Hill: Mexico City)

Davel MM (Ed.) (2008) Estimación del volumen. In ‘Establecimiento y Manejo del pino oregón en Patagonia’. Manual Number 9, Centro de Investigación y Extensión Forestal Andino Patagónico CIEFAP, pp. 69–80. (Esquel, Argentina)

de Ronde C, Goldammer JG, Wade DD, Soares RV (1990) Prescribed fire in industrial pine plantations. In ‘Fire in the Tropical Biota – Ecosystem Process and Global Challenges’. (Ed. JG Goldammer) pp. 216–272. (Springer Verlag: Berlin)

Defossé GE, Loguercio GA, Oddi FJ, Molina JC, Kraus PD (2011) CO2 emissions mitigation through forest prescribed burning – options within the frame of the Kyoto Protocol: a case study in Patagonia, Argentina. Forest Ecology and Management 261, 2243–2254.
CO2 emissions mitigation through forest prescribed burning – options within the frame of the Kyoto Protocol: a case study in Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Drake F, Acuña E, Salas S (2003) Evaluación retrospectiva para determinar la oportunidad de raleo en un rodal de pino oregón de 24 años. Bosque 24, 85–91.

Fowler JF, Sieg CH (2004) Postfire mortality of ponderosa pine and Douglas-fir: a review of methods to predict tree death. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-132. (Fort Collins, CO)

Fulé PZ, Crouse JE, Roccaforte JP, Palies EL (2012) Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behaviour? Forest Ecology and Management 269, 68–81.
Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behaviour?Crossref | GoogleScholarGoogle Scholar |

Graham R, McCaffrey S, Jain TB (2004) Science basis for changing forest structure to modify wildfire behavior and severity. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-120. (Fort Collins, CO)

Loguercio GA, Jovanovski A, Molina JC, Pantaenius P (2008) Residuos de biomasa de forestaciones y aserraderos de la región Andina de las Provincias de Chubut y Neuquén. Centro de Investigación y Extensión Andino-Patagónico CIEFAP and Japan International Cooperation Agency JICA, Evaluación preliminar de oferta. Publicación técnica 34. (Esquel, Argentina)

Long JN (1985) A practical approach to density management. Forestry Chronicle 61, 23–27.

McHugh CW, Kolb TE (2003) Ponderosa pine mortality following fire in Northern Arizona. International Journal of Wildland Fire 12, 7–22.
Ponderosa pine mortality following fire in Northern Arizona.Crossref | GoogleScholarGoogle Scholar |

Pereyra JA, Abadie CA (1966) ‘Las lluvias del oeste del Chubut.’ (Centro Regional Patagónico, Agencia de Extensión y Experimentación Esquel, Instituto Nacional de Tecnología Agropecuaria (INTA): Esquel, Chubut, Argentina)

Peterson DL (1984) Predicting fire-caused mortality in four Northern Rocky Mountain conifers. In ‘Proceedings of the 1983 Convention of the Society of American Foresters New Forests for a Changing World’, 16–20 October 1983, Portland, OR. pp. 276–280. (Society of American Foresters: Bethesda, MD)

Peterson DL (1985) Crown sorch volume and sorch height: estimates of postfire tree condition. Canadian Journal of Forest Research 15, 596–598.
Crown sorch volume and sorch height: estimates of postfire tree condition.Crossref | GoogleScholarGoogle Scholar |

Peterson DL, Arbaugh MJ (1989) Estimating postfire survival of Douglas-fir in the Cascade Range. Canadian Journal of Forest Research 19, 530–533.
Estimating postfire survival of Douglas-fir in the Cascade Range.Crossref | GoogleScholarGoogle Scholar |

Peterson DL, Ryan KC (1986) Modeling postfire conifer mortality for long-range planning. Environmental Management 10, 797–808.
Modeling postfire conifer mortality for long-range planning.Crossref | GoogleScholarGoogle Scholar |

Peterson DL, Arbaugh MJ, Pollock GH, Robinson LJ (1991) Postgrowth of Pseudotsuga menziesii and Pinus contorta in the Northern Rocky Mountains, USA. International Journal of Wildland Fire 1, 63–71.
Postgrowth of Pseudotsuga menziesii and Pinus contorta in the Northern Rocky Mountains, USA.Crossref | GoogleScholarGoogle Scholar |

Raymond CL, Peterson DL (2005) Fuel treatments alter the effects of wildfire in a mixed–evergreen forest, Oregon. USA. Canadian Journal of Forest Research 35, 2981–2995.
Fuel treatments alter the effects of wildfire in a mixed–evergreen forest, Oregon. USA.Crossref | GoogleScholarGoogle Scholar |

Reineke LH (1933) Perfecting a stand density index for even aged forests. Journal of Agricultural Research 46, 627–638.

Ryan KC (1982) Evaluating potential tree mortality from prescribed burning. In ‘Proceedings of the Symposium on Site Preparation and Fuels Management on Steep Terrain’, 15–17 February 1982, Spokane, WA. (Ed. DM Baumgartner) pp. 167–179. (Washington State University: Pullman, WA)

Ryan KC, Reinhardt ED (1988) Predicting postfire mortality of seven western conifers. Canadian Journal of Forest Research 18, 1291–1297.
Predicting postfire mortality of seven western conifers.Crossref | GoogleScholarGoogle Scholar |

Scheaffer RL, Mendenhall W, Ott L (1986) ‘Elementary Survey Sampling’, 3rd edn. (Duxbury Press: Boston, MA)

Schlobohm P, Brain J (2002) Gaining an understanding of the National Fire Danger Rating System. USDA Forest Service. US Department of Interior, National Wildfire Coordinating Group, Fire Danger Working Team, PMS 932, NFES 2665. (Boise, ID)

Van Wagner CE (1973) Height of crown scorch in forest fires. Canadian Journal of Forest Research 3, 373–378.
Height of crown scorch in forest fires.Crossref | GoogleScholarGoogle Scholar |